
KタイプDCアンプ縦型基板の製作マニュアル

K式DCアンプの回路をベースにアレンジした縦型基板です。

1.1版 - 2019年1月27日

機能概要

この基板は、月刊誌「無線と実験」で連載されている金田明彦先生のK式DCアンプの 回路をベースにアレンジした縦型アンプです。

1回路入りタイプと2回路入りタイプを用意しましたので、オペアンプと差し替えて使ってください。

<主な機能>

・1回路入りと2回路入りの2タイプ

1回路入りオペアンプと互換性のある1回路入りタイプ(K01M基板1枚+DIP8S基板1枚)と、2回路入りオペアンプと互換性のある2回路入りタイプ(K01M基板2枚+DIP8W基板1枚)を用意しました。

・本家との違い

ゼロバランス調整の回路を変えました。

2SJのFETが絶滅寸前なので、入手しやすい2SAトランジスタに置き換えました。 抵抗やコンデンサの値は参考程度と思ってください。使用FETやトランジスタによって 決めてください。

ゼロバランス調整

出力にDC成分が出ないように、VOL1の可変抵抗でゼロバランス調整が出来ます。

・入力FET

ピンタイプのFETかSMDタイプのデュアルFETを選択出来ます。

出力トランジスタ

出力トランジスタは、お好みのピンタイプのトランジスタが選択出来ます。 その他のトランジスタはSMDタイプとなります。

・基板サイズ

K01Mの基板サイズは、25mm×23mmです。

※8ピン連結ソケットを付けた完成基板サイズは、31mm×23mmです。

DIP8S/DIP8Wの基板サイズは、16mm×12mmです。

※オペアンプ用8ピンソケットに刺すDIP8S/DIP8W基板の基板サイズが専有領域です。

・電源電圧

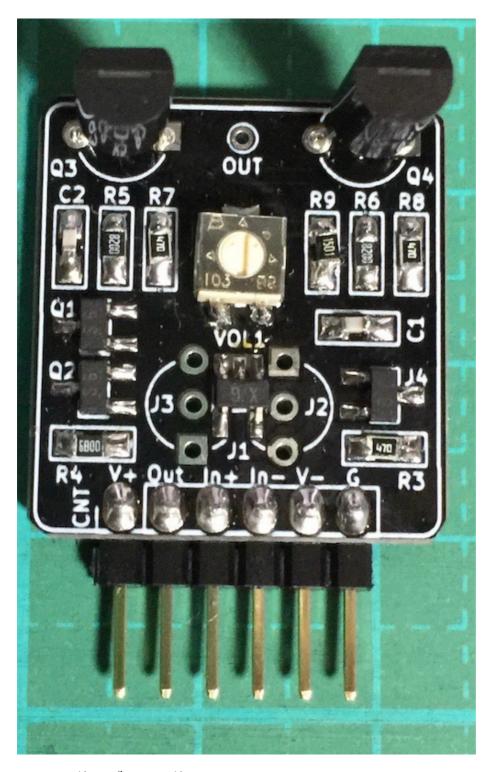
+-5Vから25Vまでです。

消費電流は1回路入りが5mA、2回路入りが10mA程度です。

KタイプDCアンプ縦型基板(Rev1.0)の部品表

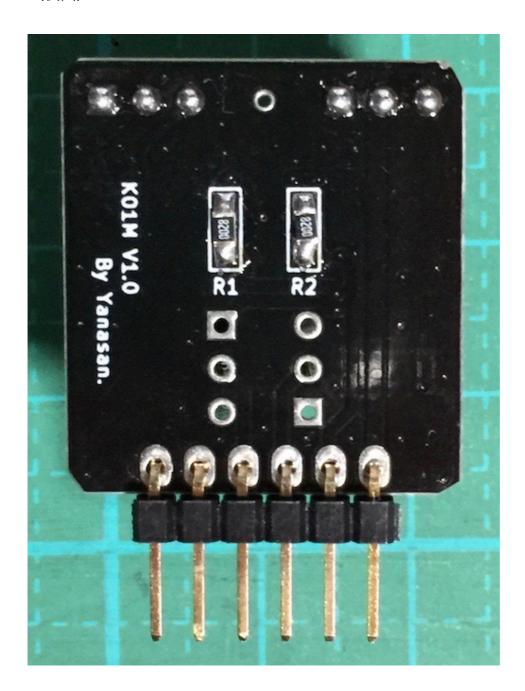
部品	番号	部品名/値	数量	備考
トランジスタ	J1	2SK2145GR	1	TSOT-23-5、デュアルJ-FET ※J2,3を使う場合は不要。
	J2,3	2SK246BL	2	J-FET、ピンはDGS、熱結合してください。 ※J1を使う場合は不要。
	J4	2SK208-GR	1	TSOT-23-3、J-FET、ピンはSDG、秋月電子のI-09997
	Q1,2	2SA1162-GR	2	TSOT-23-3、ピンはBEC、秋月電子の I-02702
	Q3,4	2SC1815	2	出力用、ピンはECB、2SC2705等
抵抗	R1,2	820Ω	2	チップ2012サイズ
	R3	47Ω	1	チップ2012サイズ
	R4	680Ω	1	チップ2012サイズ
	R5,6	840Ω	2	チップ2012サイズ、820Ω
	R7,8	47Ω	2	チップ2012サイズ
	R9	1.5ΚΩ	1	チップ2012サイズ、発振防止用、R9とC1 の値でカット周波数を変えられます。
半固定抵抗	VOL1	10ΚΩ	1	SMDタイプ(5mm×5mm)、秋月電子の P-10785
コンデンサ	C1	100pF~ 0.1uF	1	チップ2012サイズ、発振防止用、330pF、R9とC1の値でカット周波数を変えられます。
	C2	10~100pF	1	チップ2012サイズ、発振防止用、10pF
端子・その他	V+,Out,In+,In-,V- ,Gnd	1X6PIN	1	L型 1 列ピンヘッダ、秋月電子のC-05336
	_	DIP8S	1	1 回路入りタイプ用基板(オプション)
	_	DIP8W	1	2回路入りタイプ用基板(オプション)
		連結ソケット 8P	1	SOPの8ピン連結ソケット、秋月電子の P-00264

[※]抵抗は近い値でも構いません。備考の抵抗値は試作時の値です。


 $Fc=1/(2\pi \cdot R9(\Omega) \cdot C1(F))$

R9=1.5K Ω 、C1=330pF時は、Fc=321KHzとなります。

[※]トランジスタはピン配置(BECやECB)に注意して選択してください。


[※]R9とC1による発振防止のZobel回路のハイカット周波数の式は、

(表面)

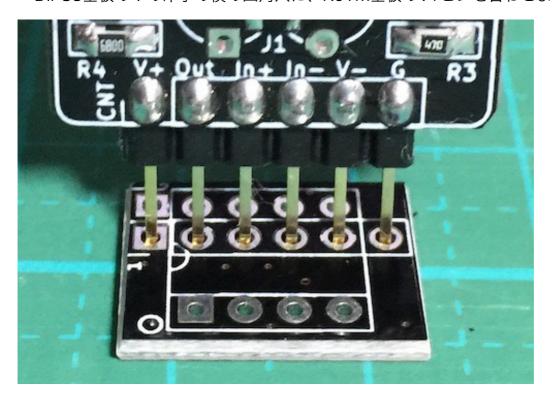
※J2,3を使わず、J1を使っています。

(裏面)

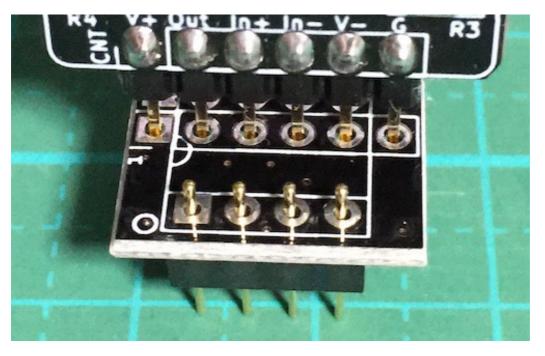
コネクタ

ピン番号	説明
V+	+5V~+25V
Out	出力信号
ln+	+入力信号
ln-	一入力信号
V-	-5~-25V
Gnd	Gnd

※L型ピンヘッダ1×6(6P)を使います。 裏面側から挿してはんだ付けしてください。

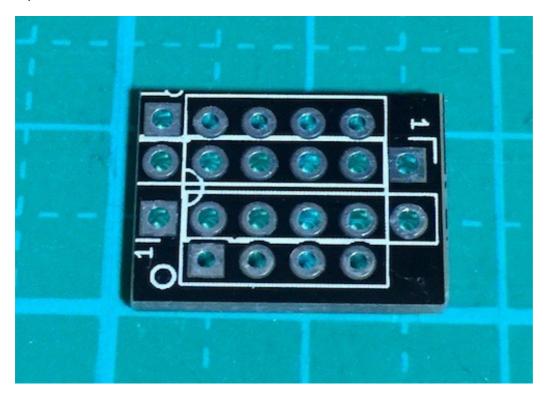

1回路入りタイプの制作について

1)完成したK01M基板1枚と、DIP8S基板1枚を用意します。

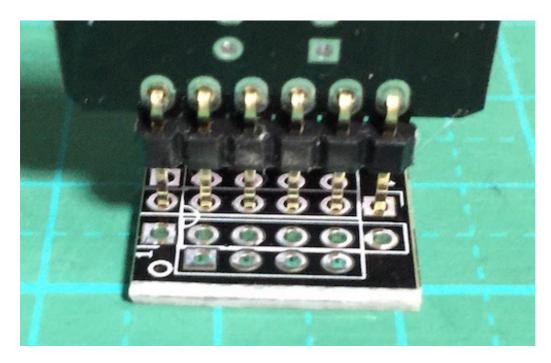


2)K01M基板のピンをDIP8S基板に挿して、DIP8S基板の裏面でピンをはんだ付けします。 連結ソケットと干渉しないようにピンの先はカットします。

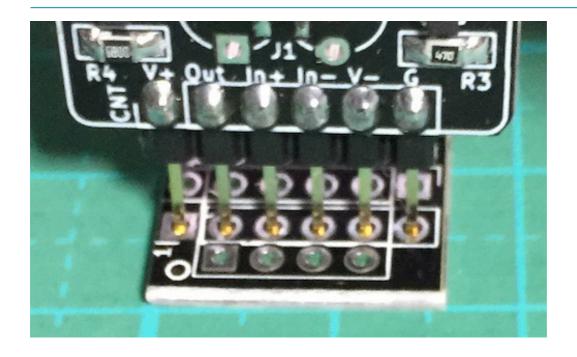
DIP8S基板の1の印字の横の四角穴に、K01M基板のV+ピンを合わせます。


3)DIP8S基板の裏面から連結ソケットを差し込んで、表面でピンをはんだ付けします。 DIP8S基板の丸印の横の四角穴が 1 番ピンとなります。

※本当はK01M基板のピンはDIP8S基板の裏面ではんだ付けしておきます。

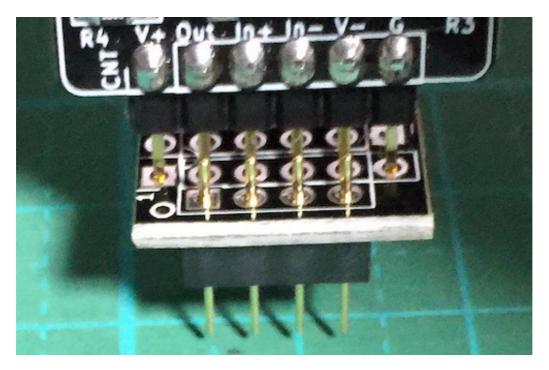

2回路入りタイプの制作について

1)完成したK01M基板2枚と、DIP8W基板1枚を用意します。



2)K01M基板のピンをDIP8W基板に挿して、DIP8W基板の裏面でピンをはんだ付けします。連結ソケットと干渉しないようにピンの先はカットします。

DIP8W基板の1の印字の横の四角穴に、K01M基板のV+ピンを合わせます。



※KO1M基板の向きを間違えないように注意してください。

3)DIP8W基板の裏面から連結ソケットを差し込んで、表面でピンをはんだ付けします。 連結ソケットのピンがK01M基板に干渉しますので、差し込む前に2mmほどピンの先端をカットしましょう。

DIP8W基板の丸印の横の四角穴が1番ピンとなります。

※本当はK01M基板のピンはDIP8W基板の裏面ではんだ付けしておきます。

製作について

SMDタイプのトランジスタをハンダ付けをしましょう。

次にSMDの可変抵抗をハンダ付けします。

SMDの抵抗とコンデンサをハンダ付けします。

L型ヘッダピン(裏面から刺します)をハンダ付けします。

最後に、電源の+一、GND間の抵抗値を測って、ショートしていないかを確認します。

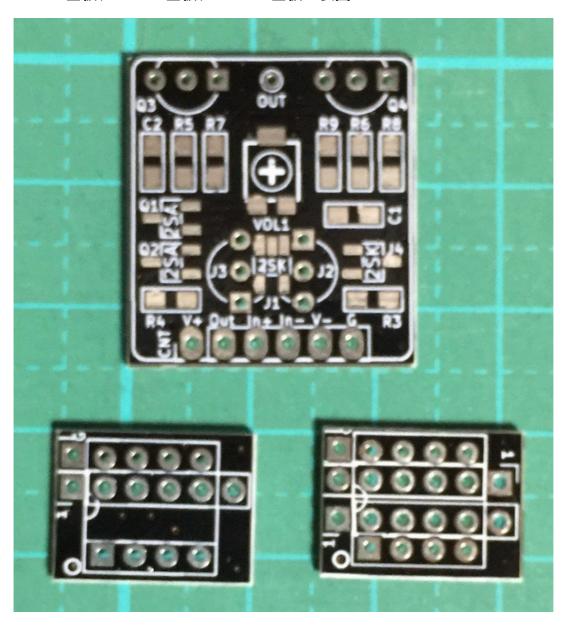
動作確認

オペアンプの代わりに差し替えるだけです。

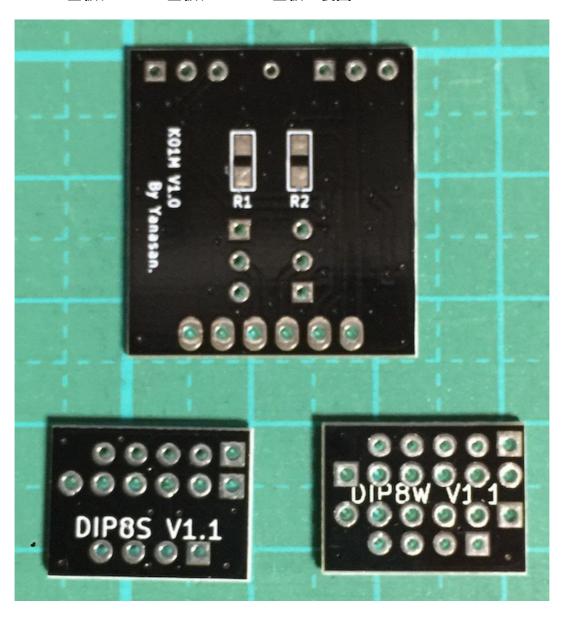
DIP8基板の丸印が1番ピンですので、差し込む位置を間違わないようにしましょう。 電源を入れて、煙や異臭がないかを確認します。

トランジスタを触って、指で触れれないほど熱くないかを確認します。

トランジスタが発熱する場合は、発振している可能性があります。


R9抵抗やC1.C2コンデンサの値を変えてみてください。

また、トランジスタのハンダ忘れやピン間のショートも注意してください。


VOL1でゼロバランス調整をします。

ゼロバランス調整は、使用する回路によって方法が異なりますので、回路の説明に従って ください。

K01M基板、DIP8S基板、DIP8W基板の表面

K01M基板、DIP8S基板、DIP8W基板の裏面

修正履歴

版数	日付	説明
Rev1.0	2019/01/07	・新規作成
Rev1.1	2019/01/27	・部品表の説明ミスを修正