### ES9038DM2 DAC基板の製作マニュアル

### ES9038PROを使ったリニューアル版デュアルDAC基板 です。

1.1版 - 2018年3月18日



### 機能概要

この基板は、ESS社のES9038PRO(またはES9028PRO) DACチップを使ったDAC基 板です。

#### く主な機能>

#### ・SPDIF入力

同軸入力または光受信モジュール入力。 サンプリング周波数44.1KHz~192KHzに対応します。 アイソレートトランス(オプション)によるアイソレートも出来ます。

・I2S入力

PCMかDSDのI2S入力。 PCM/DSD切替信号か、クロック信号を判別してPCM/DSDの切替が可能です。 アイソレートIC(オプション)でアイソレートも出来ます。

・DoP入力

PCM入力時でDoPフォーマットに対応。

DoPデータをDSDに変換して再生出来ます(環境がないため動作未確認)。

・DSDの左右チャネル反転

DSD信号は、トランスポーターによって、左右チャネルが逆になっている場合があります。

設定でDSDの左右チャネルを反転して出力出来ます。

・MUTE機能

入力のMUTE信号を検知して、出力信号のミュート制御を行います。

・マスタークロック

ES9038PROのマスタークロックに、100MHzのクロック発信器か、I2S入力のBCLK またはSCLK信号を逓倍した90.3168MHz/98.304MHzのクロックを選択できます。 マスタークロックは、Si5317によるジッタークリーニングが出来ます。

・外部クロック

システムクロック用に、外部クロックを使うことが出来ます。

・ゲインキャリブレーション機能

ゲインキャリブレーション機能を使って、左右DACチップの出力のバラ付きに対処し ています。

#### ・マイコン制御は別基板

マイコンのI2C通信制御は、コントローラ1(WROOM-02)基板から行います。 マイコンが基板上にないので、マイコンの音への影響はありません。 コントローラ1基板の替わりに、DAI2またはDAI3基板からのI2C通信制御も可能です。

・基板サイズ

100mm×100mmです。

・電源

デジタル用+4V以上(350mA)が2電源、アナログ用+4V以上(350mA)が2電源、制御IC 用+4V以上(300mA)が1電源、入力アイソレータ用+3.3V(100mA)が1電源の合計6電 源です。

ES9038PROのアナログ3.3V電源、アナログ&デジタル1.2V電源、デジタル3.3V電源 とSi5317の電源は、超低ノイズのLDO電源IC(ADM7154を7個使用)から供給します。

| 部品        | 番号                                    | 部品名/値           | 数量 | 備考                                                     |  |
|-----------|---------------------------------------|-----------------|----|--------------------------------------------------------|--|
| IC        | IC1                                   | Si8660BA        | 1  | SO16、入力信号用アイソレートIC(オプシ<br>ョン)                          |  |
|           | IC2                                   | ADuM1250        | 1  | SO8、I2C信号用アイソレートIC                                     |  |
|           | IC3                                   | 74LVCU04        | 1  | TSSOP14、SPDIFのコンパレータ用                                  |  |
|           | IC4,6                                 | 74LVC125        | 2  | 2 TSSOP16                                              |  |
|           | IC5                                   | PCF8574A        | 1  | TSSOP20                                                |  |
|           | IC7                                   | ICS570B         | 1  | SO8                                                    |  |
|           | IC8                                   | Si5317D         | 1  | QFN-36,100MHz DigiKey(336-1920-ND)                     |  |
|           | IC9                                   | PCAL9539A       | 1  | SSOP24、PCA9539Aとは互換はありませ<br>ん。                         |  |
|           | IC10                                  | LP5907-3.3      | 1  | TSOT-23-5、3.3V                                         |  |
|           | IC11.14.15.17.18                      | ADM7154-3.<br>3 | 5  | SO8、アナログとデジタル+3.3V用LDO電<br>源<br>パッケージには715433と書いてあります。 |  |
|           | IC12.13                               | ES9038PRO       | 2  | LQFP64、オプションでES9028PRO版も<br>あります。                      |  |
|           | IC16,19                               | ADM7154-1.<br>2 | 2  | SO8、デジタル+1.2V用LDO電源<br>パッケージには715412と書いてあります。          |  |
| 発振器       | XTI                                   | 水晶発振器           | 1  | 114.285MHz DigiKey(887-2484-1-ND)                      |  |
|           | XT2                                   | FXO-HC736R      | 1  | 100MHz DigiKey(631-1176-1-ND)                          |  |
| 抵抗        | R1                                    | 75Ω             | 1  | 1/4W金皮抵抗                                               |  |
|           | R2                                    | 47ΚΩ            | 1  | チップ2012サイズ                                             |  |
|           | R3,8,9,14-16,25,26,<br>28,29,31,33-36 | 10ΚΩ            | 15 | チップ2012サイズ<br>※LED用抵抗は輝度によっては値を変えて下<br>さい。             |  |
|           | R4-7,17-21,27                         | 22Ω             | 10 | チップ2012サイズ、入力/クロック用ダンピ<br>ング抵抗                         |  |
|           | R10-13                                | 1ΚΩ             | 4  | チップ2012サイズ                                             |  |
|           | R22                                   | 100Ω            | 1  | チップ2012サイズ                                             |  |
|           | R23,24                                | 150Ω            | 2  | チップ2012サイズ                                             |  |
|           | R30,32                                | 100ΚΩ           | 2  | チップ2012サイズ、0.1%誤差                                      |  |
| コンデン<br>サ | C1,10,70,78,92,100                    | 100uF/6V以<br>上  | 6  | 電解コンデンサ、直径7mm、OSコンがお薦<br>め、サイズに注意                      |  |

#### ES9038DM2 DAC基板(Rev1.1)の部品表

| 部品        | 番号                                                                                | 部品名/値      | 数量 | 備考                                                               |
|-----------|-----------------------------------------------------------------------------------|------------|----|------------------------------------------------------------------|
|           | C2,5-7,11,16,18-20,<br>29-31,34-44,46-62,<br>64-69,71,79,93,101                   | 0.1uF      | 50 | チップ3216(2012も可)サイズ,パスコン、添<br>付品は秋月電子のP-00355、<br>PMLCAPコンデンサがお薦め |
|           | C3,8,9,17,32,33                                                                   | 0.1uF      | 6  | チップ2012サイズ、パスコン、秋月電子の<br>P-00355                                 |
|           | C4                                                                                | 0.01~0.1uF | 1  | フィルムコンデンサ(ピン幅5mm)、SPDIF<br>のパスコン用                                |
|           | C12,14,22,24,73,75,<br>81,83,87,89,95,97,1<br>03,105,109,111                      | luF        | 16 | チップ3216(2012も可)サイズ、パスコン                                          |
|           | C13                                                                               | 0.01uF     | 0  | 不要                                                               |
|           | C15,26,77,85,91,99,<br>107,113                                                    | 10uF/4V以上  | 8  | チップ3225サイズ、タンタルコンデンサ<br>※極性に注意してください。                            |
|           | C21,23,25,72,74,76,<br>80,82,84,86,88,90,9<br>4,96,98,102,104,10<br>6,108,110,112 | 10uF       | 21 | チップ3216(2012も可)サイズ、パスコン、<br>PMLCAPコンデンサがお薦め                      |
|           | C27,28                                                                            | 0.1uF      | 2  | チップ3225サイズ、PanasonicのPPSコン<br>がお薦め、添付品は2012サイズ                   |
|           | C45,63                                                                            | 200pF      | 2  | チップ2012サイズ                                                       |
| インダク<br>タ | FB1-8                                                                             | 33uH       | 8  | チップ2012サイズ,フェライトビーズ(ショー<br>トで代用可)、秋月電子のP-04053                   |
| LED       | IN-P,DTL-P,AL-P,DL-<br>P,AR-P,DR-P                                                | 3mmLED     | 6  | 3mmLED、電源表示用(付けなくても良<br>い)                                       |
|           | LOL,LOS,LOCK-<br>L,LOCK-R                                                         | 3mmLED     | 4  | ステータス表示用                                                         |
| トランス      | ТІ                                                                                | DA101C     | 1  | DA101C (オプション)                                                   |
| 端子        | IN                                                                                | 2X7PIN     | 1  | 2.54mmピンヘッダ(2列)、PCM/DSD入力<br>用                                   |
|           | SPDIF                                                                             | 3PIN       | 1  | B3B-XH-A、SPDIF入力用                                                |
|           | CONTROL                                                                           | 2X7PIN     | 1  | 2.54mmピンヘッダ(2列)、マイコンコント<br>ローラ接続用                                |
|           | L-OUT                                                                             | 2X5PIN     | 1  | 2.54mmピンヘッダ(2列)、左チャネル出力                                          |
|           | R-OUT                                                                             | 2X5PIN     | 1  | 2.54mmピンヘッダ(2列)、右チャネル出力                                          |
|           | PWR1                                                                              | 2PIN       | 1  | B2B-XH-A、アイソレータIC電源用<br>3.3V(50mA)                               |
|           | PWR2                                                                              | 2PIN       | 1  | B2B-XH-A、制御IC電源用4V以上<br>(300mA)                                  |

| 部品 | 番号      | 部品名/値 | 数量 | 備考                                          |
|----|---------|-------|----|---------------------------------------------|
|    | DL-PWR  | 2PIN  | 1  | B2B-XH-A、左CHデジタル電源用4~<br>5V(350mA/200mA)    |
|    | DR-PWR  | 2PIN  | 1  | B2B-XH-A、右CHデジタル電源用4~<br>5V(350mA/200mA)    |
|    | AL-PWR  | 2 PIN | 1  | B2B-XH-A、左CHアナログ電源用4~<br>5V(350mA/200mA)    |
|    | AR-PWR  | 2 PIN | 1  | B2B-XH-A、右CHアナログ電源用4~<br>5V(350mA/200mA)    |
|    | EXT-CLK | SMA-J | 1  | SMAコネクタ、SMA-J(基板用)、外部クロ<br>ック入力用、秋月電子のS-036 |

※色が濃い枠の部品はキットに添付されます。



※パスコンの一部に添付品ではないPMLCAPコンデンサを使っています。



#### INコネクタ

| ピン番号 | 説明                                                       |
|------|----------------------------------------------------------|
| 1    | SDATA/DSDR                                               |
| 2    | Gnd                                                      |
| 3    | LRCK/DSDL                                                |
| 4    | Gnd                                                      |
| 5    | BCLK/DSDCLK                                              |
| 6    | Gnd                                                      |
| 7    | SCLK                                                     |
| 8    | Gnd                                                      |
| 9    | +3.3V出力(JP1,3,5ショート時)                                    |
| 10   | (Gnd、JP2,4,6ショート時)                                       |
| 11   | PCM/DSD識別信号(PCM=LOW,DSD=HIGH)<br>※入力信号のPCM/DSDの判定に使用します。 |
| 12   | MUTE(ミュート時はHIGH、通常はLOW)                                  |
| 13   | SDA(DAI2/3と接続時に使用)                                       |
| 14   | SCL(DAI2/3と接続時に使用)                                       |

※ピンヘッダ2×7(14P)を使います。

I2S入力時、PCM信号またはDSD信号を入力します。

11ピンのPCM/DSD識別信号を使う場合は、PCM時はLOW、DSD時はHIGHにしてください。

SPDIFコネクタ

| ピン番号                     | 説明                      |  |  |  |
|--------------------------|-------------------------|--|--|--|
| 1                        | D(SPDIF信号)              |  |  |  |
| 2                        | G (Gnd)                 |  |  |  |
| 3                        | V(光モジュール用に3.3Vまたは5Vを出力) |  |  |  |
| SPDIF入力時、SPD/IF信号を入力します。 |                         |  |  |  |

※DAI2/3と接続時は使用出来ません。

#### CONTROLコネクタ

| ピン番号 | 説明   |
|------|------|
| 1    | リザーブ |
| 2    | Gnd  |

| ピン番号 | 説明                            |
|------|-------------------------------|
| 3    | LRCK/DSDL                     |
| 4    | Gnd                           |
| 5    | BCLK/DSDCLK                   |
| 6    | Gnd                           |
| 7    | SCLK                          |
| 8    | Gnd                           |
| 9    | +3.3V出力                       |
| 10   | Gnd                           |
| 11   | PCM/DSD識別信号(PCM=LOW,DSD=HIGH) |
| 12   | MUTE(ミュート時はHIGH、通常はLOW)       |
| 13   | SDA                           |
| 14   | SCL                           |

※ピンヘッダ2×7(14P)を使います。

コントローラ1基板からI2C制御を行う時に、各種信号の出力と、I2C信号を入出力します。

#### EXT\_CLKコネクタ

SMA-Jメスコネクタを取り付けて、同軸ケーブルを経由して外部クロックを入力します。

DACのマスタークロック用に、X2の100MHzクロックやINコネクタから入力される BCLK/SCLK信号の逓倍クロックを使わず、外部クロック発振器を使う場合、外部クロッ ク発振器の出力信号を入力します。

※外部クロックは、100MHz、90.3168MHz、98.304MHzの何れかを入力してくだ さい。

#### L-OUT/R-OUTコネクタ

| ピン番号 | 説明                           |
|------|------------------------------|
| 1    | CH1+CH3の正出力信号(30.4mA/7.6mA)  |
| 2    | CH1+CH3の反転出力信号(30.4mA/7.6mA) |
| 3    | CH5+CH7の正出力信号(30.4mA/7.6mA)  |
| 4    | CH5+CH7の反転出力信号(30.4mA/7.6mA) |
| 5    | CH6+CH8の正出力信号(30.4mA/7.6mA)  |
| 6    | CH6+CH8の反転出力信号(30.4mA/7.6mA) |

| ピン番号                 | 説明                           |  |  |  |  |
|----------------------|------------------------------|--|--|--|--|
| 7                    | CH2+CH4の正出力信号(30.4mA/7.6mA)  |  |  |  |  |
| 8                    | CH2+CH4の反転出力信号(30.4mA/7.6mA) |  |  |  |  |
| 9                    | Gnd                          |  |  |  |  |
| 10                   | +3.3V出力(JP13,JP14ショート時)      |  |  |  |  |
| ※ピンヘッダ2×5(10P)を使います。 |                              |  |  |  |  |

ES9038PROの8CH出力を1ピンに2CHづつを合成しています。 ※全ての正出力信号及び反転出力信号を束ねて合成すると、120mA(ES9028PROは 30mA)程度になりますので、接続するI/Vアンプは過負荷にならないようなものを選択 してください。

#### LEDについて

ステータス表示や電源表示用のLEDです。 用途によって発光色を分けることをお薦めします。 例)エラー系は赤色、電源系は黄色、ステータス系は青色

#### • IN-P LED

PWR1電源の表示用です。 LEDが点灯している場合は、電源入力が正常です。 LEDが点灯していなければ、電源入力が異常です。

#### • DTL-P LED

PWR2電源の表示用です。 LEDが点灯している場合は、電源入力が正常です。 LEDが点灯していなければ、電源入力が異常です。

#### ・DL-P LED

DL-PWR電源の表示用です。 LEDが点灯している場合は、電源入力が正常です。 LEDが点灯していなければ、電源入力が異常です。

#### • AL-P LED

AL-PWR電源の表示用です。 LEDが点灯している場合は、電源入力が正常です。 LEDが点灯していなければ、電源入力が異常です。

#### ・DR-P LED

DR-PWR電源の表示用です。 LEDが点灯している場合は、電源入力が正常です。 LEDが点灯していなければ、電源入力が異常です。

#### • AR-P LED

AR-PWR電源の表示用です。 LEDが点灯している場合は、電源入力が正常です。 LEDが点灯していなければ、電源入力が異常です。

#### LOS LED

Si5317への入力クロックの入力状態をLED点灯で知らせます。 LEDが点灯している場合は、クロックが入力されていて正常です。 LEDが点灯していなければクロックが入力されていません。 =>SI5317周りのハンダ不良の可能性があります。

#### LOL LED

Si5317のロック状態をLED点灯で知らせます。 LEDが点灯している場合は、ロックされていて正常です。 LEDが点灯していなければ、クロックがロックされていません。 =>SI5317周りのハンダ不良の可能性があります。

#### LOCK-L LED

LEDが点灯している場合は、左DACはロックされていて正常です。 LEDが点灯していなければ、左DACはロックされていません。

#### · LOCK-R LED

LEDが点灯している場合は、右DACはロックされていて正常です。 LEDが点灯していなければ、右DACはロックされていません。

#### ジャンパーランドについて

各設定用のジャンパーランドです。 ハンダショートまたはオープン(ショートしない)で、必ず選択してください。

#### ・JP1 (裏面)

INコネクタの10ピンのGnd用です。
10ピンをGndに落とす場合は、ショートします(推奨)。
10ピンをGndに落とさない場合は、オープンにします。
お気楽さんの基板とコネクタ接続する場合は、オープンにします。

#### ・JP2(裏面)

INコネクタの9ピンの+3.3V出力用です。
+3.3Vを出力する場合は、ショートします。
+3.3Vを出力しない場合は、オープンにします(推奨)。

#### ・JP3-8(表面)

入力信号アイソレートIC2無し用です。 IC2を搭載しない場合は、ハンダショートします。 IC2を搭載する場合は、オープン(何もしない)のままです。

#### ・JP9(裏面)

DAI2/3と接続時のSDA信号用です。

DAI2/3と接続する場合は、ショートします。 DAI2/3と接続しない場合は、オープンにします。

・JP10 (裏面)

DAI2/3と接続時のSCL信号用です。 DAI2/3と接続する場合は、ショートします。 DAI2/3と接続しない場合は、オープンにします。

#### ・JP11,12(裏面)

SPDIFのアイソレートトランスT1無し用です。 T1を搭載しない場合は、ハンダショートします。 T1を搭載する場合は、オープン(何もしない)のままです。

#### ・JP13,14(裏面)

L-OUT/R-OUTコネクタの10ピンの+3.3V出力用です。 +3.3Vを出力する場合は、ショートします。 +3.3Vを出力しない場合は、オープンにします(推奨)。

#### コントローラ1基板またはDAI2/3基板の接続とDACタイプの設定について

この基板にはマイコンが搭載されていないので、制御はコントローラ1基板か、DAI2/ 3基板から行います。

1)コントローラ1基板接続の場合

マイコンは制御するDAC基板毎に用意されていますので、ES9038DM2基板を制御するマイコンを選んで下さい。

D1-4ピンでDAC基板を選択する。

接続するES9038X DAC基板をピンショートで設定します。

| D1         | D2                           | D3 | D4 | DAC基板           |  |  |  |
|------------|------------------------------|----|----|-----------------|--|--|--|
| —          | —                            | —  |    | DAC基板無し(設定禁止)   |  |  |  |
| •          | •                            | -  | —  | ES9038DM2 DAC基板 |  |  |  |
| ?          | ?                            | ?  | ?  | リザーブ(設定禁止)      |  |  |  |
| <b>*</b> • | ※●はショート、ーはオープン、?はショートまたはオープン |    |    |                 |  |  |  |

DAC基板のジャンパーランドを設定する。

JP9とJP10のジャンパーランドは、オープンにします。

FB8のフェライトビーズは外します(アイソレータ無しの場合は外さない)。



コントローラ1基板とDAC基板のCONTROLコネクタを7×2ピンのフラットケーブル で接続する。

コントローラ1基板とDAC基板の電源投入は、同時かDAC基板を先にする事。

2)DAI2/3基板接続の場合

マイコンは制御するDAC基板毎に用意されていますので、ES9038DM2基板を制御するマイコンを選んで下さい。

D1-7ピンでDAC基板を選択する。

接続するES9038X DAC基板をピンショートで設定します。

| D1         | D2                           | D3 | D4 | D5 | D6 | D7 | DAC基板           |
|------------|------------------------------|----|----|----|----|----|-----------------|
| —          | —                            | —  | —  | _  | —  | —  | DAI2/3のみ制御      |
| •          | —                            | —  | —  | _  | —  | —  | ES9038DM DAC基板  |
| —          | •                            | —  | —  | —  | —  | —  | ES9038S DAC基板   |
| •          | •                            | —  | —  | _  | —  | —  | ES9038DM2 DAC基板 |
| ?          | ?                            | ?  | ?  | ?  | ?  | ?  | リザーブ(設定禁止)      |
| <b>*</b> • | ※●はショート、ーはオープン、?はショートまたはオープン |    |    |    |    |    |                 |

DAC基板のジャンパーランドを設定する。

JP9とJP10のジャンパーランドは、ハンダショートにします。

FB8のフェライトビーズは外します(アイソレータ無しの場合は外さない)。

DAI2/3基板のOUT1コネクタとDAC基板のINコネクタを7×2ピンのフラットケーブ ルで接続する。

DAI2/3基板とDAC基板の電源投入は、同時かDAC基板を先にする事。

#### 電源について

電源は、デジタル用+4V以上(350mA/200mA)が2電源、アナログ用+4V以上 (350mA/200mA)が2電源、制御IC用+4V以上(300mA)が1電源、入力アイソレータ用 +3.3V(100mA)が1電源の合計6電源です。

ES9038PROのアナログ3.3V電源、アナログ&デジタル1.2V電源、デジタル3.3V電源 とSi5317の電源は、超低ノイズのLDO電源IC(ADM7154を7個使用)から供給します。

左右チャネルの分離のために、6電源それぞれに独立供給をお勧めします。

私の製作したTPS7A4700デュアル電源基板3枚使いがお薦めです。

入力アイソレータ用+3.3Vは、DAI2/3基板接続時はDAI2/3基板から供給を、コントロー ラ1基板接続時はコントローラ1基板兼用でTPS7A4700デュアル電源基板を1枚追加し てください。

※入力アイソレータIC1-3を使わない場合は、入力アイソレータ用+3.3Vは不要です。 電源トランスには、4V電圧では2次側出力4V~6Vが良いでしょう。

入力アイソレータ用+3.3V(100mA)

制御IC用+4V以上(300mA)

左CHデジタル電源用+4V以上(350mA/200mA)

右CHデジタル電源用+4V以上(350mA/200mA)

左CHアナログ電源用+4V以上(350mA/200mA)

右CHアナログ電源用+4V以上(350mA/200mA)

※括弧内の電流値は、前者がES9039PRO時、後者がES9028PRO時です。

※ES9038PRO用アナログ+3.3Vはアナログ電源用+4VからADM7154で+3.3Vに 変換しています。

※ES9038PRO用アナログ&デジタル+1.2Vはデジタル電源用+4VからADM7154 で+1.2Vに変換しています。

※ES9038PRO用デジタル+3.3Vはデジタル電源用+4VからADM7154で+3.3Vに変換しています。

※Si5317用デジタル+3.3Vは制御IC電源用+4VからADM7154で+3.3Vに変換しています。

#### 入力について

SPDIF入力は、SPDIFコネクタの+, GにSPDIFコネクタ(同軸ケーブル)を接続しま す。

光入力の場合は、SPDIFコネクタのVにPWR1電源(3.3Vまたは5V)から出力されるので、光モジュールの電源端子に接続してください。

※光モジュールの電圧と同じ値をPWR1電源に供給してください。

PCM入力とDSD入力は、INコネクタに各信号線を接続します。 ※入力ケーブルが長いとうまく行かない事があります。10cm以下がお薦めです。

DSD入力の場合、DSD-LとDSD-Rがあります。

トランスポート機器によって、DSDの左右チャネルの信号線の割り当てが異なるためです。

本基板は、LRCK/DSDLとSDATA/DSDRの組み合わせが標準で、DSD-Lです。 LRCK/DSDRとSDATA/DSDLの組み合わせが、DSD-Rです。

例えば、エレアトさんのP2D基板はDSD-L、SDTrans384はDSD-R入力となります。

入力サンプリング周波数は、BCLK/DSDCLK信号をカウントして自動判定します。

PCMの対応サンプリング周波数(Fs)は、32KHz~768KHzです。 PCMのDoPデータにも再生出来ます(環境が無いので未確認)。 DSDの対応サンプリング周波数は、DSD64、DSD128、DSD256、DSD512です。 ※範囲外の入力時は、ノイズが出ないように出力をミュートします。

ES9038PROはマスタークロックが供給されていないと、I2C通信によるDACチップの 制御が出来ません。

マスタークロックの設定が100MHz Clock以外の時、設定した入力信号のBCLKか SCLKか外部クロックが入っていないとES9038のI2C通信エラーが発生する場合があり ます。

※通常は自動的に100MHzクロックに切り替わるので、続けて使用出来ます。

#### 出力について

L-OUT出力から左チャネルが、R-OUT出力から右チャネルが、差動電流(または電圧) 出力されます。

出力は差動出力のみです。

出力はES9038の2CH分づつを合成して、チャネル当り4出力(左右チャネルで合計 8出力)しています。

差動出力は、OUT出力の正出力信号と反転出力信号が出るので、それぞれを差分合成 アンプに入力します。

接続する先のインピーダンスがローなら電流出力で、ハイなら電圧出力になります。 電流出力の場合はI/Vアンプを、電圧出力の場合は差分合成アンプを接続します。 ES9038PROは、ES9018Sの4倍の出力電流になっていますので、DAC用の普通の OPAMPを使ったI/Vアンプは使えません。

※1出力当り32mA(ES9028PRO版は8mA)×4出力

私のES9038専用I/Vオペアンプ基板がお勧めです。

ES9028PRO版はES9018S互換ですので、一般のI/VアンプやI/Vトランスが使えます。

#### 外部クロックについて

ES9038PROのマスタークロックに、外部クロックが使用出来ます。

44.1KHz系は、90.3168MHzのクロックを、

48KHz系は、98.304MHzのクロックをお勧めします。

100MHzクロックも使えますが、クロックは逓倍になっている方が、DACがロックし やすくなります。

高精度なクロック発振器がお勧めで、7.5mm×5.0mm、5.0mm×3.2mm、3.2mm× 2.5mmサイズの3ステート(出力イネーブル)タイプで3.3V用が搭載出来ます。

ES9038PROのマスタークロック用に、基板上の100MHzクロックを使わず、外部クロック発振器を使う場合、EXT-CLOCKコネクタから外部クロック発振器の出力信号を挿します。

※外部クロックは、44.1KHz系は90.3168MHzのクロックを、48KHz系は 98.304MHzのクロックを、100MHzクロックの3つから一つを選んでください。

#### LCD 画面 表示 について

コントローラ1基板とES9038DM2 DAC基板の組み合わせ時のLCDに表示される画面について説明します。

DAI2またはDAI3基板とES9038DM2 DAC基板の組み合わせ時に関しては、 DAI2+ES9038X説明マニュアルまたはDAI3+ES9038X説明マニュアルをお読み下さい。

#### 0)開始画面

起動直後に、この画面が表示されて、起動画面に切り替わります。



#### 1)初期化画面

SELスイッチを押したまま電源を入れると、この画面が表示されて、メイン画面に切り 替わります。

保存している設定値を初期値に戻します。 動作がおかしくなった時に試してみてください。

# ES9038DM2 DAC

2) 起動画面

電源を入れると、2秒ほど、この画面が表示されます。 マイコンのプログラム版数が確認できます。

ES9038DM2 DAC

V1.0(20XX/XX/XX)

#### 3) Appleリモコンのペアリング設定画面

Appleリモコンのペアリングを行います。

P1スイッチを押したまま電源を入れると、この画面が表示されます。

10秒以内に、AppleリモコンのMENUキーとRIGHTキーを同時に5秒以上長押しして、Appleリモコンとペアリングを行ってください。

ペアリングすると、その後はペアリングしたリモコンにしか反応しなくなります。 ペアリングを解除したい場合は、SELスイッチを押したまま電源を入れて初期化してく ださい。



ペアリングに成功すると、この画面が5秒間表示されます。

### Pairing

OK ID=b2

ID=XXのXXは、ペアリングしたAppleリモコンの識別番号です(16進数2桁)。 ※Appleリモコンが複数台ある場合、同じ識別番号の可能性があります。

この時は、AppleリモコンのMENUキーとPLAY(センター)キーを同時に5秒以上 長押しすると、識別番号が1加算されるので、違う識別番号に変更出来ます。

MENUキーとRIGHTキーの同時長押しをしないと、ペアリングが失敗して、この画面が5秒間表示されます。

Pairing

NG ID=00

ID=XXのXXは、ペアリング済みのAppleリモコンの識別番号です(16進数2桁)。

#### 4)マイコンアップデート画面

マイコンのアップデートを行えます。 P2スイッチを押したまま電源を入れると、この画面が表示されます。 ※WiFi接続の設定済みで、起動時にP9スイッチをオープンにしてある事が前提です。

### Update Process

WiFi Wait...

マイコンがWiFi接続されるまで、1分間程待ちます。 ※その間は、WiFi LEDが点滅します。

WiFi接続が成功(WiFi LEDが点灯)すると、この画面が表示されます。

| Update | Start |
|--------|-------|
| =>XXXX |       |

①は、ホスト名でデフォルトは**ES9038X**です。

PCやスマホ等のWebブラウザから、URLを「http://ホスト名.local」と入力してください。

| ••••• a      | iu ᅙ          | 15:02         | 7 🕴 41% 🔳 |  |
|--------------|---------------|---------------|-----------|--|
| $\leftarrow$ | dai2.local    | /             | 1         |  |
| (ファイル        | を選択 📕 DAI2.ir | no.bin Update | Cancel    |  |

Webブラウザ上に表示された「ファイルを選択」ボタンをクリックして、アップデート ファイル名を選択します。

※アップデートファイルは、開発元から開示されたファイルをダウンロードしてください。

選択が終わったら、「Update」をクリックします。

アップデートを中止する時は、「Cancel」をクリックします。

アップデート中は、ERROR LEDが点滅して、完了すると点滅が終わり、マイコンが自動的にリセット(リスタート)します。

アップデートが成功すると、Webブラウザには、「Update OK」と表示されます。 アップデートが失敗すると、Webブラウザには、「Update NG」と表示されます。 Web画面は閉じて下さい。

#### 5)メイン画面

通常はこの画面が表示されます。

<LCD 20桁×4行タイプ>

| PCM <sup>1</sup> | 44.1K2 H3L | L4 |
|------------------|------------|----|
| XX               | XXX XXX5   |    |
| XX X             | ХХХХ       |    |
| Х                | XXX.XXXdB  |    |

<LCD 16桁×2行タイプ>

| PCM1 | 44. | 1K2      |
|------|-----|----------|
| H3L  | L4) | -10.0dB5 |

①選択している入力を表示します。
SPDIF
PCM
DSD-L
DSD-R

②入力中のサンプリング周波数を表示します。

| 入力タイプ              | 表示されるサンプリング周波数                                                              |
|--------------------|-----------------------------------------------------------------------------|
| SPDIF              | 32.0K、44.1K、48.0K、88.2K、96.0K、176.4K、192.0K※                                |
| PCM                | 32.0K、44.1K、48.0K、88.2K、96.0K、176.4K、192.0K、352.8K、<br>384.0K、705.6K、768.0K |
| DSD                | 2.8M、3.0M、5.6M、6.1M、11.2M、12.2M、22.5M、24.5M                                 |
| 入力無しか規定外           | No Lock                                                                     |
| マスタークロック無し<br>か規定外 | No MCLK                                                                     |

※周波数はDPLL値とマスタークロックを元に計算しているため、誤表示する場合があります。

③サンプリング周波数の44.1KHz系か48KHz系かを表示します。

| サンプリング周波数タイプ | 表示内容                             |
|--------------|----------------------------------|
| L            | 44.1KHz系                         |
| Н            | 48KHz系                           |
| -            | 不明(強制的にマスタークロックは100MHzクロックになります) |

④左チャネルと右チャネルのDACのロックと入力有無の状態を表示します。

| サンプリング周波数タイプ | 表示内容      |
|--------------|-----------|
| UM           | アンロック、入力無 |
| U            | アンロック、入力有 |
| L            | ロック、入力有   |

⑤音量値を表示します。

-99.5dBから0.5dB単位で最大0.0dBとなります。

⑥PLAYキーを押したMUTE状態のメイン画面です。

| РСМ  | 4 | 4.1K | HL   | L  | -   |  |
|------|---|------|------|----|-----|--|
| MUTE | 6 | XX   | ХХ   | X  | XXX |  |
| XX   | Х | ХХ   | X    | Х  |     |  |
|      | Х | XXX  | (.X) | XX | dB  |  |
|      |   |      |      |    |     |  |

| РСМ   | 44.1K   |
|-------|---------|
| MUTE6 | -10.0dB |

※メイン画面以外の画面時に、入力サンプリング周波数を変更しても検知出来ませんので、動作がおかしくなる場合があります。その時はメイン画面も戻れば正常動作になります。

#### 6)入力の選択画面 (Input Type)

入力の選択を設定します。

Input Type PCM/DSD Signal

+,-,MENU,<,>:select

Input Type

PCM/PCM Signal

| 選択項目           | 説明                                  |
|----------------|-------------------------------------|
| SPDIF          | SPDIF入力(SPDIFコネクタ)                  |
| PCM            | PCM入力(INコネクタ)                       |
| DSD            | DSD入力(INコネクタ)                       |
| PCM/DSD Signal | PCM/DSD切り替え信号による自動切り替え(INコネクタ)(初期値) |
| PCM/DSD Auto   | PCMまたはDSDのクロック信号による自動切り替え(INコネクタ)   |

+、ーキーで、選択項目を切替できます。

※PCM/DSD Autoの場合、BCLKとLRCK信号を解析して自動切り替えしますが、正しく判定出来ない場合があります。また、マイコンの負荷も増えます。

#### 7) 設定の選択画面 (Setting Select)

入力別設定の選択を設定します。これ以降の設定項目に進めます。 殆どの設定項目は、入力毎に設定が可能です。 WiFi Setを選んだ場合は、WiFiの接続確認や、接続設定が出来ます。 ※設定項目は、入力別設定に追加されます。

### Setting Select

PCM Set

+,-,MENU,<,>:select

### Setting Select PCM Set

| 選択項目                | 説明         |  |
|---------------------|------------|--|
| SPDIF Set           | SPDIF設定    |  |
| PCM Set             | PCM設定(初期値) |  |
| DSD Set             | DSD設定      |  |
| WiFi Set            | WiFi設定     |  |
| +、ーキーで、選択項目を切替できます。 |            |  |

#### 8)DACのステータス画面(Status)

上の業に左チャネル、下の行に右チャネルのDACの状態を表示します。 他の設定画面では、キー操作が5秒以上無いとメイン画面に自動で戻りますが、この 画面では戻りません。



R:a9 007dd3d6 L

①ES9038PROのステータスを16進数で表示します。

aO:入力有、アンロック

a9:入力有、ロック(正常時)

aa:未入力、アンロック

②DPLLのサンプルレート数値を16進数で表示します。

サンプルレート数値からDACが処理中の周波数を求める事が出来ます(詳細は省略)。

この値の変化が少ないほど安定して再生されていることになります。 ※同期モードの時は、DPLLが使われないので値は更新されません。 ③DACのロックと入力有無の状態を表示します。

UM:アンロック、入力無

- U :アンロック、入力有
- L : ロック、入力有(正常時)

#### **9)入力PCMシリアルフォーマット設定画面(PCM Input Format)入力別に記憶** 入力PCMのシリアル形式を設定します。

PCM Input Format

32bit I2S

+,-,MENU,<,>:select

### PCM Input Fmt.

32bit I2S

| 選択項目         | 説明               |
|--------------|------------------|
| 16bit R-Just | 16ビット後詰め         |
| 24bit R-Just | 24ビット後詰め         |
| 32bit R-Just | 32ビット後詰め         |
| 16bit L-Just | 16ビット前詰め         |
| 24bit L-Just | 24ビット前詰め         |
| 32bit R-Just | 32ビット後詰め         |
| 16bit I2S    | 1 6 ビットI2S       |
| 24bit I2S    | 2 4 ビットI2S       |
| 32bit I2S    | 32ビットI2S(初期値)    |
|              | で ロナ 切 井 マ キ ナ ナ |

+、ーキーで、選択項目を切替できます。

#### 10)ディエンファシス周波数設定画面(De-emphasis Select)

ディエンファシス周波数を設定します。

De-emphasis Select Bypass

+,-,MENU,<,>:select

### De-emphasis Sel.

Bypass

| 選択項目                | 説明          |  |
|---------------------|-------------|--|
| 32K                 | 32KHz       |  |
| 44.1K               | 44.1KHz     |  |
| 48K                 | 48KHz       |  |
| SPDIF Auto          | 自動判定(初期値)   |  |
| Bypass              | ディエンファシスしない |  |
| +、ーキーで、選択項目を切替できます。 |             |  |

#### 11)入力のFIRフィルタ設定画面(FIR Filter)

PCM/SPDIFのFIRフィルタを設定します。 好みのFIRフィルタを選んでください。 FIRフィルタは、SPDIFとPCM時に使われます。DSDは、IIRフィルタのみを使います。

### FIR Filter Fast Roll-off

### +,-,MENU,<,>:select

### FIR Filter

Fast Roll-off

| 選択項目          | 説明                                     |
|---------------|----------------------------------------|
| Fast Roll-off | fast roll-off, linear phase            |
| Slow Roll-off | slow roll-off, linear phase            |
| Fast Minimum  | fast roll-off, minmum phase(初期值)       |
| Slow Minimum  | slow roll-off, minmum phase            |
| Apodizi Fast  | apodizing, fast roll-off, linear phase |
| Hybrid Fast   | hybrid, fast roll-off, minmum phase    |
| Brickwall     | brikwall                               |
| OSF Bypass    | OSF(オーバーサンプリング)しない                     |
|               |                                        |

+、ーキーで、選択項目を切替できます。

#### 12)IIRフィルタの通過帯域設定画面(IIR Filter BW)入力毎

IIRフィルタの通過帯域を設定します。 サンプリング周波数に合わせて、適切な通過帯域を選択してください。

IIR Filter BW 47.44K

+,-,MENU,<,>:select

IIR Filter BW 47.44K

| 選択項目   | 説明            |
|--------|---------------|
| 47.44K | 47.44KHz(初期值) |
| 50K    | 50KHz         |
| 60K    | 60KHz         |
| 70K    | 70KHz         |

+、-キーで、選択項目を切替できます。

#### 13)DoPデータ変換の設定画面(DoP Transcoder)

PCM/SPDIFのDoPデータ変換(PCMデータからDSDに変換)を有効にするかを設定 します。

PCM/SPDIFのDoPデータを再生する際に有効を選択して下さい。

| DoP Transcoder      |  |
|---------------------|--|
| Disable             |  |
|                     |  |
| +,-,MENU,<,>:select |  |
|                     |  |

# DoP Transcoder

Disable

| 選択項目                | 説明               |
|---------------------|------------------|
| Disable             | DoPデータ変換は無効(初期値) |
| Enable              | DoPデータ変換は有効      |
| +、-キ-で、選択項目を切替できます。 |                  |

#### 14)入力DSDの左右CH設定画面(DSD L/R Select)

入力DSDの左右CHを設定します。

DSD L/R Select DSD-L

+,-,MENU,<,>:select

## DSD L/R Select

DSD-L

| 選択項目                | 説明                              |
|---------------------|---------------------------------|
| DSD-L               | LRCK/DSDLとSDATA/DSDRの組み合わせ(初期値) |
| DSD-R               | LRCK/DSDRとSDATA/DSDLの組み合わせ      |
| +、-キ-で、選択項目を切替できます。 |                                 |

#### 15)マスタークロックの調整画面(Clock Gear)入力毎

ES9038PROの内部のクロック周波数を設定します。

内部のクロック周波数を下げる事でDACの消費電力を大きく下げることが出来ます。 Autoモードを選択すると、入力と同期モードと非同期モード別に、自動的に内部のクロック周波数を調整します。

※音質的には、MCLK=XINが一番良いですが、消費電力は最大になります。



Clock Gear

MCLK=Auto

| 選択項目       | 説明                        |
|------------|---------------------------|
| MCLK=XIN   | マスタークロックと同じ               |
| MCLK=XIN/2 | マスタークロックの二分の一             |
| MCLK-XIN/4 | マスタークロックの四分の一             |
| MCLK=XIN/8 | マスタークロックの八分の一             |
| MCLK=Auto  | サンプリング周波数を判断して自動的に調節(初期値) |
| +、-キ-で、選択  | 項目を切替できます。                |

#### 16)ノイズディザーの設定画面(Noize Dither)

ES9038PROのノイズシェイプモジュレータでディザーを有効にするかを設定します。 ディザーは有効を選択される事をお薦めします。



Enable

+,-,MENU,<,>:select

Noize Dither

Enable

| 選択項目                | 説明          |
|---------------------|-------------|
| Disale              | ディザー無効      |
| Enable              | ディザー有効(初期値) |
| +、-キ-で、選択項目を切替できます。 |             |
#### **17)THD補正ロジックの設定画面(THD Compensation)入力毎** ES9038PROのTHD補正ロジックを有効にするかを設定します。

THD補正ロジックは、2次及び3次の高調波歪を補正しています。 THD補正ロジックは有効を選択される事をお薦めします。

| THD Compensation    |
|---------------------|
| Enable              |
|                     |
| +,-,MENU,<,>:select |
|                     |

THD Compens.

Enable

| 選択項目                | 説明               |
|---------------------|------------------|
| Disable             | THD補正ロジック無効      |
| Enable              | THD補正ロジック有効(初期値) |
| +、-キ-で、選択項目を切替できます。 |                  |

#### **18)ジッター除去回路とDPLL回路の設定画面(Jitter Eliminator)入力毎** ES9038PROのジッター除去回路とDPLL回路を有効にするかを設定します。 ジッター除去回路とDPLL回路は有効を選択される事をお薦めします。



+,-,MENU,<,>:select

Jitter Elim. Enable

LIIUDLE

| 選択項目      | 説明                     |
|-----------|------------------------|
| Enable    | ジッター除去回路とDPLL回路有効(初期値) |
| Disable   | ジッター除去回路とDPLL回路無効      |
| +、-キ-で、選択 | 項目を切替できます。             |

#### 19)PCM/SPDIFのDPLLのバンド幅設定画面(PCM/SPDIF DPLL BW)入力毎

ES9038PROのPCM/SPDIF時のDPLLのバンド幅を設定します。 バンド幅が小さいと音が良くなりますが、ロックが外れやすくなります。 ロックが外れると音が出ません。 ロックが外れずに音の良いバンド幅を選択してください。



DPLL5

| 選択項目      | 説明                    |             |
|-----------|-----------------------|-------------|
| OFF       | DPLLを使わない             |             |
| DPLL1~15  | 数字が小さい程、バンド幅が小さくなります。 | (初期値はDPLL5) |
| +、-キ-で、選択 | 項目を切替できます。            |             |

#### 20)DSDのDPLLのバンド幅設定画面(DSD DPLL BW)入力毎

ES9038PROのDSD時のDPLLのバンド幅を設定します。 バンド幅が小さいと音が良くなりますが、ロックが外れやすくなります。 ロックが外れると音が出ません。 ロックが外れずに音の良いバンド幅を選択してください。



DPLL10

| 選択項目      | 説明                    |              |
|-----------|-----------------------|--------------|
| OFF       | DPLLを使わない             |              |
| DPLL1~15  | 数字が小さい程、バンド幅が小さくなります。 | (初期値はDPLL10) |
| +、ーキーで、選択 | 項目を切替できます。            |              |

#### 21)同期モードの設定画面(Sync Mode)入力毎

ES9038PROのDPLLを使った非同期モードか、DPLLを使わずマスタークロックと同期するモードを設定します。

同期モードを選択した場合は、マスタークロックの設定で100MHz Clock以外にして ください。

| Sync Mode           |   |
|---------------------|---|
| Normal Mode         |   |
|                     |   |
| +,-,MENU,<,>:select |   |
|                     | 1 |
| Sync Mode           |   |

Normal Mode

| 選択項目        | 説明                                |
|-------------|-----------------------------------|
| Normal Mode | 非同期モード(DPLLを使ってロックします)(初期値)       |
| Syncro Mode | 同期モード(DPLLを使わずMCLKに同期した外部クロックを使用) |
| +、ーキーで、選択   | 頃目を切替できます。                        |

※同期モード時は、23)マスタークロックの設定画面で、BCLKxnかSCLKx4/2を設定してください。

同期モードの際は、5)ステータス画面のDPLLのサンプルレート数値は、停止またはオール0となります。

#### 22)DPLLのロック速度の設定画面(Lock Speed)入力毎

ES9038PROのDPLLに必要なオーディオサンプル数(FIRエッジ数)を設定します。 値が大きいほどDPLLのロック速度が遅くなりますが、ロックの精度は高くなります。 ロック速度とロック精度の兼ね合いで値を選択してください。





| 選択項目     | 説明                |
|----------|-------------------|
| 16384(D) | FIRエッジ数16384(初期値) |
| 8192     | FIRエッジ数8192       |
| 5461     | FIRエッジ数5461       |
| 4096     | FIRエッジ数4096       |
| 3276     | FIRエッジ数3276       |
| 2730     | FIRエッジ数2730       |
| 2340     | FIRエッジ数2340       |
| 2048     | FIRエッジ数2048       |
| 1820     | FIRエッジ数1820       |
| 1638     | FIRエッジ数1638       |
| 1489     | FIRエッジ数1489       |
| 1365     | FIRエッジ数1365       |
| 1260     | FIRエッジ数1260       |
| 1170     | FIRエッジ数1170       |
| 1092     | FIRエッジ数1092       |
| 1024     | FIRエッジ数1024       |

+、ーキーで、選択項目を切替できます。

#### 23)マスタークロックの設定画面(Clock Select)入力毎

ES9038PROののマスタークロックの周波数を設定します。 同期モード時は、BCLKかSCLKの逓倍モードを選択してください。 ※100MHz Clock以外に設定した時、INコネクタの入力信号(BCLKやSCLK)から正し くマスタークロックが生成できない場合があります。

その時は、LCDにI2C通信エラーが出ますが、通常は強制的に100MHzに切り替わりますので問題ありませんが音は悪くなりますので、正しい設定に替えて下さい。

# Clock Select

100MHz Clock

+,-,MENU,<,>:select

Clock Select 100MHz Clock

| 選択項目             | 説明                                                          |
|------------------|-------------------------------------------------------------|
| 100MHz Clock     | 基板上のクロック発振器から100MHzを出力(初期値)                                 |
| BCLKxn           | BCLK(64fs固定)をn逓倍して90.3168MHz/98.304MHzを生成                   |
| SCLKx4           | SCLK(22.5792MHz/24.576MHz)を4逓倍して90.3168MHz/98.304MHz<br>を生成 |
| SCLKx2           | SCLK(45.1584MHz/49.152MHz)を2逓倍して90.3168MHz/98.304MHz<br>を生成 |
| Ext-Clock 100MHz | EXT-CLOCKコネクタから100MHz外部クロック                                 |
| Ext-Clock 90MHz  | EXT-CLOCKコネクタから90.3168MHz外部クロック                             |
| Ext-Clock 98MHz  | EXT-CLOCKコネクタから98.304MHz外部クロック                              |

+、ーキーで、選択項目を切替できます。

※BCLK x n時は、PCMのサンプリング周波数32KHzには対応しません。

※ジッタークリーナーでロック出来なかった時は、強制的に100MHz Clockモードで 動作します。

#### 24)ジッタークリーナーの設定画面(JC Bandwidth)入力毎

ES9038PROのマスタークロック用のジッタークリーナーのバンド幅を設定します。 ジッタークリーナーがロックするまで最大1秒がかかり、その間にノイズが出る場合が あります(ロック中はDACミュートしています)。

バンド幅が狭い(Lowest)ほど音は良くなりますが、ロックしにくい場合は、ロック しやすいように、Low,Mediumとバンド幅を広げてください。



Bypass以外の時は、画面右にジッタークリーナーのロックと入力有無の状態を表示します。

| サンプリング周波数タイプ | 表示内容      |
|--------------|-----------|
| UM           | アンロック、入力無 |
| U            | アンロック、入力有 |
| L            | ロック、入力有   |

| 選択項目        | 説明                  |
|-------------|---------------------|
| Lowest      | Lowest              |
| Low         | Low                 |
| Medium      | Medium              |
| Medium-High | Medium-High         |
| High        | High                |
| Bypass      | ジッタークリーナーを使わない(初期値) |
| エーモーズ 遅切    | 「百日を切麸できます          |

+、ーキーで、選択項目を切替できます。

#### 25)ゲインキャリブレーションの設定画面(Gain Callibration)

ES9038PROのゲインキャリブレーションを設定します。 ES9038PROは製造の都合からチップ毎に出力ゲインにバラ付きがあります。 ゲインキャリブレーションを有効にする事で、出力ゲインを自動的に調節出来ます。 特に問題がなければ、Alwaysを選択して下さい。 ※ゲインキャリブレーションの処理の都合上、出力がOdBから-2dBになります。

# Gain Callibration

Always

+,-,MENU,<,>:select

# Gain Callib.

### Always

| 選択項目      | 説明           |
|-----------|--------------|
| Always    | 常に自動調整(初期値)  |
| Only Once | 起動時に1度だけ自動調整 |
| No Adjust | 自動調整は行わない    |
| +、ーキーで、選択 | 項目を切替できます。   |
| ※この設定は、再起 | 動から有効となります。  |

#### 26)自動ミュートの設定画面(Automute Set)

ES9038PROの自動ミュート機能を設定します。 PCM/SPDIF時、入力信号が切れたり変化したらノイズを出さないように自動的に出力 をミュートする機能の設定になります。

再生環境に合わせて選択して下さい。

DSD時は、自動ミュート機能は機能しません。

※自動ミュートを有効にしても、DSDからPCMに切り替える場合はノイズが出ます。

### Automute Set

Mute

+,-,MENU,<,>:select

#### Automute Set

Mute

| 選択項目                | 説明                      |  |
|---------------------|-------------------------|--|
| No Mute             | 何もしない                   |  |
| Mute                | 出力をミュートする(初期値)          |  |
| Out-GND             | 出力端子をグランドに落とす           |  |
| Mute+Out-GND        | 出力をミュートして、出力端子をグランドに落とす |  |
| +、ーキーで、選択項目を切替できます。 |                         |  |

#### 27)音量制御モードの設定画面(Volume Select)

ES9038PROの音量制御モードを設定します。 利用スタイルに合わせて、ロータリーエンコーダ及びリモコン、手動ボリューム、最大 値固定から選べます。

Volume Select

Encoder Volume

+,-,MENU,<,>:select

Volume Select

Encoder Volume

| 選択項目                | 説明                         |
|---------------------|----------------------------|
| Encoder Volume      | ロータリーエンコーダ及びリモコンで音量制御(初期値) |
| Manual Volume1      | 手動ボリュームで音量制御(直線変化)         |
| Manual Volume2      | 手動ボリュームで音量制御(対数変化A)        |
| Manual Volume3      | 手動ボリュームで音量制御(対数変化B)        |
| Fixed Volume        | 最大音量に固定                    |
| +、-キ-で、選択項目を切替できます。 |                            |

#### 28)入力Mute信号の設定画面(Mute Signal)

INコネクタの12ピンのMUTE信号によってDAC内部のミュート制御を行います。 MUTE信号を使うか無視するか設定してください。

```
Mute Signal
```

Normal

+,-,MENU,<,>:select

Mute Signal

# Normal

| 選択項目     | 説明                                                      |
|----------|---------------------------------------------------------|
| Invalid  | MUTE信号を無視して、Mute制御は行わない。                                |
| Normal   | MUTE信号(HIGH=Mute/LOW=No Mute)でDAC内部をミュート制御しま<br>す。(初期値) |
| Negative | MUTE信号(HIGH=No Mute/LOW=Mute)でDAC内部をミュート制御しま<br>す。      |

+、ーキーで、選択項目を切替できます。

ミュート制御をすると、トランスポーター側でノイズが発生時にMUTE信号をONにす る処理がされていると、DACからノイズが出ません。

※Combo384のMUTE信号はDSD<=>PCM切替時にパルスを出すだけなので、 「Mute Invalid」を設定してください。

#### 29)WiFiの接続状態画面(WiFi Status)

WiFiの接続状態を表示します。

WiFi Status

Connect

- IP:192.168.X.XX
- +,-,MENU,<,>:select

## WiFi Status

### Connect

| 表示行  | 表示内容                  | 説明                  |
|------|-----------------------|---------------------|
| 1 行目 | Connect<br>No Connect | 接続されている<br>接続されていない |
| 2行目  | IP:XXX.XXX.XXX.XXX    | WiFi接続時のIPアドレス      |
| 3行目  | SSID:XXXXXXXXXXX      | 接続先のSSID            |
| 4行目  | MAC:XXXXXXXXXXX       | マイコンのMACアドレス        |
| 5行目  | HOST:DAI2             | ホスト名                |

+、ーキーで、表示内容を切替できます。

#### 30)WiFiのWPSボタンによる接続指示画面(WiFi WPS Connect)

WiFi接続先の設定に、無線ルーターの無線LAN設定ボタン(WPSボタン)で接続します。

無線ルーターにWPSボタンが付いていない場合は、31)WiFiのSSIDとパスワードを設定する接続指示画面で行ってください。

※無線ルーターの暗号化モードがWEPや、SSIDステレス機能が有効な時は、WPSボタン による設定は出来ません。

WiFiが接続済みの場合は、

### WiFi WPS Connect

Connect OK

と表示されます。メイン画面か次の設定画面に進んで下さい。

WiFiが接続されていなければ、

### WiFi WPS Connect

Yes:Up No:Menu

と表示されます。

+、ーキーで、WPSボタンによる接続操作画面になります。

MENUキーで、中止出来ます。

### Press WPS Button

Yes:Up No:Menu

無線ルーターのWPSボタンを3秒間押します。 ボタンの呼び名はメーカーによって違います。 ・WPS・AOSS・らくらくスタート等 押す時間3秒間も、メーカーによって異なるので、取り扱い説明書を確認してください。

+、ーキーで、WPSボタンによる接続実行画面になります。 MENUキーで、中止出来ます。

# WiFi WPS Mode

# WPS Setting...

しばらく待つと、WIFI LEDが点滅を開始して、自動接続を行います。 接続されるまで最大1分間待ちます。

・成功すると、WIFI LEDが点灯したままで、画面が切り替わります。

WiFi WPS Mode

## WPS Connected!

5秒後に、マイコンが自動的にリスタートして、再起動されます。 起動時に、登録された無線ルーターのSSIDにWiFi接続します。

・失敗すると、WIFI LEDが消灯したままで、画面が切り替わります。

WiFi WPS Mode

WPS NG

5秒後に、マイコンが自動的にリスタートして、再起動されます。

#### 31)WiFiのSSIDとパスワードを設定する接続指示画面(SSID AP Set)

マイコンをWiFi親機として切り替えて、その親機にWiFi接続して、Webブラウザから 無線ルーターのSSIDとパスワードを入力して、マイコンに記憶させます。

次回の起動から、記憶したSSIDとパスワードを使って、自動的にWiFi接続するように なります。

WiFiが接続済みの場合は、



Connect OK

と表示されます。メイン画面か次の設定画面に進んで下さい。

WiFiが接続されていなければ、

### SSID AP Set

Yes:Up No:Menu

と表示されます。

+、ーキーで、マイコンがWiFi親機となってAPサーバーが起動されて、APサーバー開 始画面になります。

MENUキーで、中止出来ます。

※ここからは、WiFi接続可能なパソコンか、iPhoneやAndroidのスマートフォンが必要です。

### AP Server Start

192.168.X.XX

#### a)マイコン親機のSSIDに接続

WiFi LEDが点灯します。

パソコンかiPhoneやAndroidのスマートフォンから、WiFi接続機能でマイコン親機の SSIDに接続します。

SSID一覧などに、**ES9038X-XXXXXX**という名前のSSIDが追加されていますので、 そのSSIDを選択します。

パスワードは、「**12345678**」です。

#### b)無線ルーターのSSIDとパスワードを登録

マイコン親機のSSIDに接続が出来たら、Webブラウザを起動します。

APサーバー開始画面の2行目に表示されているIPアドレス(**192.168.4.1**)をURL (**http://192.168.4.1**)として入力します。

Webブラウザに、SSID Select画面が表示されます。

| ull au '     | Ŷ         | 14:12  | 7 🖇 90% 🔳 |
|--------------|-----------|--------|-----------|
| $\leftarrow$ | () 192.10 | 58.4.1 | 1:        |

# **SSID** Select

Please select SSID and enter the password.



SSIDのリスト欄から、自分の無線ルーターのSSIDを選択します。

SSIDのリスト欄に自分のSSIDが見つからない場合は、SSID2の欄に、SSIDを入力します。

※リスト欄より優先されるので、リスト欄から選択する場合は入力しない事。 Passwordの欄に、SSIDのパスワードを入力して、送信ボタンをクリックします。 暫くして、SSIDがマイコンに記録されると、

SSID registration succeeded.

の画面に切り替わります。



# SSID registration succeeded.

After auto-restarting, AK449X will be connected to "Planex\_24-E68496".

c)マイコンがリセット

SSID登録が成功すると、マイコンが自動的にリスタートして、再起動されます。 起動時に、登録された無線ルーターのSSIDにWiFi接続します。

#### 32)ホスト名の設定画面(Host Name Change)

ホスト名を最大12文字まで設定出来ます。

WiFi接続時にWebブラウザに操作画面を表示するためのホスト名を変更する場合に設 定してください。

ホスト名は、Webブラウザに入力するURL名(ホスト名.local)として使います。

| Host Name Change    |
|---------------------|
| Yes:Up No:Menu      |
|                     |
| +,-,MENU,<,>:select |
|                     |

Host Name Change

Yes:Up No:Menu

+、ーキーで、ホスト名の設定画面になります。 MENUキーで、中止出来ます。

# Host Name Input

### DAI2A

ホスト名の最後にカーソルがあります。

Aから@までの文字を+、ーキーで切り替えて、RIGHT(▶)キーで1文字決定となりま す。

LEFT(◀)キーで1文字削除となります。

MENUキーで取り消しとなります。

PLAYキーで変更決定(変更したホスト名は次回の起動から有効)となります。 最大12文字まで入力出来ます。

#### Web画面表示について

WiFi接続時は、PCやスマホ等のWebブラウザから、URLを「http://ホスト名.local」 と入力すると、Web画面から操作が出来ます。 Web画面表示には5秒程度かかりますので、気長にお待ち下さい。

※今回は、試験的な機能と考えてください。

※Web画面による設定操作中は、リモコンや設定ピンによる設定操作は行わないで下さい。

Web画面について説明します。

#### 1)メイン画面 (Main)

最初にこの画面が表示されます。

※メイン画面以外の画面時に、入力サンプリング周波数を変更しても検知出来ませんので、動作がおかしくなる場合があります。その時はメイン画面も戻れば正常動作になります。

| E                 | S9038X Control Ma | in  |
|-------------------|-------------------|-----|
| Status: Connected | d                 |     |
| Input Select:     |                   |     |
| SPDIF             | PCM               | DSD |
| PCM/DSD-S         | PCM/DSD-A         |     |
|                   | -20.0dB           |     |
| SPDIF Set         | PCM Set DSD S     | Set |
| Info              |                   |     |

#### ・画面表示の状況(Status)

画面表示の状況を表示します。

「Connected」になるまで、操作は待って下さい。

#### ※全ての画面にあります。

| Status表示    | 説明                             |
|-------------|--------------------------------|
| Connectting | 画面表示処理中<br>※ボタンクリック等の操作はしないこと。 |
| Connected   | 画面表示完了<br>正常な状態で、各操作が可能です。     |
| ReStart     | 画面の再表示中<br>※ボタンクリック等の操作はしないこと。 |

| Status表示 | 説明                  |
|----------|---------------------|
| Closed   | 画面終了中               |
|          | ※ボタンクリック等の操作はしないこと。 |

#### ・入力選択(Input Select)

入力を選択します。

| 選択項目      | 説明                                  |
|-----------|-------------------------------------|
| SPDIF     | SPDIF入力(SPDIFコネクタ)                  |
| PCM       | PCM入力(INコネクタ)                       |
| DSD       | DSD入力(INコネクタ)                       |
| PCM/DSD-S | PCM/DSD切り替え信号による自動切り替え(INコネクタ)(初期値) |
| PCM/DSD-A | PCMまたはDSDのクロック信号による自動切り替え(INコネクタ)   |
| 選択ボタンをクリッ | ク(タッチ)すると切替できます。                    |

#### ・入力情報 (Input Info)

入力の情報を表示します。

PCM/DSDの種別、サンプリング周波数、入力の入力形式またはカットオフ周波数等 を随時表示します。

#### ・MUTEボタン(MUTE)

出力をミュート出来ます。 ボタンを押すと、出力がミュートされ、もう一度押すと、出力が通常に戻ります。

## ・SPDIF Setボタン(SPDIF Set)

SPDIF入力の設定画面に移動します。

- PCM Setボタン (PCM Set)
  PCM入力の設定画面に移動します。
- **DSD Setボタン (DSD Set)** DSD入力の設定画面に移動します。
- Infoボタン (Info)
  情報画面に移動します。

#### 2)情報画面 (Infomation)

Infoボタンが押されると、この画面が表示されます。 ホスト名やWiFi接続情報等を表示します。



#### ・ホスト名(Name)

ホスト名を表示します。

入力欄に新しいホスト名を入力して、「Name Edit」ボタンを押すと、ホスト名が更 新されます。

更新したホスト名は次回の起動から有効となります。

最大12文字まで入力出来ます。

#### ・DAC基板設定(Dac Board)

D1-4設定ピンで、I2C通信で制御するDAC基板を設定出来ます。 設定されているDAC基板名を表示します。

DAC基板が設定されていなければ、「No DAC」と表示します。

#### ・LCDタイプ(LCD)

LCDの表示タイプを表示します。

| LCDタイプ表示 | 説明           |
|----------|--------------|
| 20x4     | LCD 2 0 桁×4行 |
| 16x2     | LCD 1 6 桁×2行 |

- ・プログラム名 (Program Name) マイコンのプログラム名を表示します。
- ・プログラム版数 (Program V/L) マイコンのプログラムの版数(バージョン/レベル)を表示します。
- WiFiホスト名 (WiFi Host Name)
  Web画面やアップデート画面のURL名(ホスト名)を表示します。
- ・WiFiのIPアドレス(WiFi IP Address)
  WiFi接続時のIPアドレス(XXX.XXX.XXX.XXX)を表示します。
- WiFiのSSID (WiFi SSID)
  WiFi接続している無線ルーターのSSIDを表示します。
- ・Mainボタン(Main)

メイン画面に戻ります。

#### 3)入力別設定画面(XXX Setting)

Main画面から設定選択ボタンが押されると、この画面が表示されます。 入力別に各種設定を表示します。



#### ・入力Mute信号の設定(Input Mute Signal Control) PCM/DSDのみ

入力(XXX)のI2S信号選択の時、INコネクタの12ピンのMUTE信号によってミュート制御を行います。

MUTE信号を使うか無視するか設定してください。

| 選択ボタン                     | 説明                                                      |  |
|---------------------------|---------------------------------------------------------|--|
| Normal                    | MUTE信号(HIGH=Mute/LOW=No Mute)でDAC内部をミュート制御しま<br>す。(初期値) |  |
| Negative                  | MUTE信号(HIGH=No Mute/LOW=Mute)でDAC内部をミュート制御しま<br>す。      |  |
| Invalid                   | MUTE信号を無視して、Mute制御は行わない。                                |  |
| 選択ボタンをクリック(タッチ)すると切替できます。 |                                                         |  |

ミュート制御をすると、トランスポーター側でノイズが発生時にMUTE信号をONにす る処理がされていると、DAI2からノイズが出ません。

※Combo384のMUTE信号はDSD<=>PCM切替時にパルスを出すだけなので、 「Mute Invalid」を設定してください。

# ・入力PCMシリアルフォーマット設定画面(Input PCM Format) PCM/SPDIFのみ 入力PCMのシリアル形式を設定します。

| 選択項目         | 説明            |
|--------------|---------------|
| 16bit R-Just | 16ビット後詰め      |
| 24bit R-Just | 24ビット後詰め      |
| 32bit R-Just | 32ビット後詰め      |
| 16bit L-Just | 16ビット前詰め      |
| 24bit L-Just | 24ビット前詰め      |
| 32bit R-Just | 32ビット後詰め      |
| 16bit I2S    | 16ビットI2S      |
| 24bit I2S    | 2 4 ビットI2S    |
| 32bit I2S    | 32ビットI2S(初期値) |
|              |               |

選択ボタンをクリック(タッチ)すると切替できます。

### ・ディエンファシス周波数設定画面(Input PCM De-emphasis Control) PCM/ SPDIFのみ

ディエンファシス周波数を設定します。

| 選択項目  | 説明          |
|-------|-------------|
| 32K   | 32KHz       |
| 44.1K | 44.1KHz     |
| 48K   | 48KHz       |
| Auto  | 自動判定(初期値)   |
| Off   | ディエンファシスしない |

選択ボタンをクリック(タッチ)すると切替できます。

#### ・入力のFIRフィルタ設定画面(PCM FIR Filter) PCM/SPDIFのみ

PCM/SPDIFのFIRフィルタを設定します。

好みのFIRフィルタを選んでください。

FIRフィルタは、SPDIFとPCM時に使われます。DSDは、IIRフィルタのみを使います。

| 選択項目          | 説明                                     |
|---------------|----------------------------------------|
| Fast Roll-off | fast roll-off, linear phase            |
| Slow Roll-off | slow roll-off, linear phase            |
| Fast Minimum  | fast roll-off, minmum phase(初期值)       |
| Slow Minimum  | slow roll-off, minmum phase            |
| Apodizi Fast  | apodizing, fast roll-off, linear phase |
| Hybrid Fast   | hybrid, fast roll-off, minmum phase    |
| Brickwall     | brikwall                               |
| OSF Bypass    | OSF(オーバーサンプリング)しない                     |
|               |                                        |

選択ボタンをクリック(タッチ)すると切替できます。

#### ・IIRフィルタの通過帯域設定画面(IIR Filter Bandwidth)入力毎

IIRフィルタの通過帯域を設定します。

サンプリング周波数に合わせて、適切な通過帯域を選択してください。

| 選択項目   | 説明            |
|--------|---------------|
| 47.44K | 47.44KHz(初期值) |
| 50K    | 50KHz         |
| 60K    | 60KHz         |
| 70K    | 70KHz         |

選択ボタンをクリック(タッチ)すると切替できます。

#### ・DoPデータ変換の設定画面 (Input PCM DoP) PCM/SPDIFのみ

PCM/SPDIFのDoPデータ変換(PCMデータからDSDに変換)を有効にするかを設定 します。

PCM/SPDIFのDoPデータを再生する際に有効を選択して下さい。

| 選択項目    | 説明               |
|---------|------------------|
| DoP Off | DoPデータ変換は無効(初期値) |
| DoP On  | DoPデータ変換は有効      |
|         |                  |

選択ボタンをクリック(タッチ)すると切替できます。

#### ・入力DSDの左右CH設定画面(Input DSD L/R)DSDのみ

入力DSDの左右CHを設定します。

| 選択項目      | 説明                              |
|-----------|---------------------------------|
| DSD-L     | LRCK/DSDLとSDATA/DSDRの組み合わせ(初期値) |
| DSD-R     | LRCK/DSDRとSDATA/DSDLの組み合わせ      |
| 選択ボタンをクリッ | ク(タッチ)すると切替できます。                |

#### ・マスタークロックの調整画面(Gear Mode)入力毎

ES9038PROの内部のクロック周波数を設定します。

内部のクロック周波数を下げる事でDACの消費電力を大きく下げることが出来ます。 Autoモードを選択すると、入力と同期モードと非同期モード別に、自動的に内部のクロック周波数を調整します。

※音質的には、MCLK=XINが一番良いですが、消費電力は最大になります。

| 選択項目       | 説明                        |
|------------|---------------------------|
| MCLK=XIN   | マスタークロックと同じ               |
| MCLK=XIN/2 | マスタークロックの二分の一             |
| MCLK-XIN/4 | マスタークロックの四分の一             |
| MCLK=XIN/8 | マスタークロックの八分の一             |
| MCLK=Auto  | サンプリング周波数を判断して自動的に調節(初期値) |
| 選択ボタンをクリッ  | ク(タッチ)すると切替できます。          |

#### ・ノイズディザーの設定画面(Noize Dither)

ES9038PROのノイズシェイプモジュレータでディザーを有効にするかを設定します。 ディザーは有効を選択される事をお薦めします。

| 選択項目   | 説明          |
|--------|-------------|
| Disale | ディザー無効      |
| Enable | ディザー有効(初期値) |

選択ボタンをクリック(タッチ)すると切替できます。

・THD補正ロジックの設定画面(THD Compensation)入力毎
 ES9038PROのTHD補正ロジックを有効にするかを設定します。

THD補正ロジックは、2次及び3次の高調波歪を補正しています。

THD補正ロジックは有効を選択される事をお薦めします。

| 選択項目      | 説明               |
|-----------|------------------|
| Disable   | THD補正ロジック無効      |
| Enable    | THD補正ロジック有効(初期値) |
| 選択ボタンをクリッ | ク(タッチ)すると切替できます。 |

・ジッター除去回路とDPLL回路の設定画面(Jitter Eliminator)入力毎
 ES9038PROのジッター除去回路とDPLL回路を有効にするかを設定します。
 ジッター除去回路とDPLL回路は有効を選択される事をお薦めします。

| 選択項目      | 説明                     |
|-----------|------------------------|
| Enable    | ジッター除去回路とDPLL回路有効(初期値) |
| Disable   | ジッター除去回路とDPLL回路無効      |
| 選択ボタンをクリッ | ク(タッチ)すると切替できます。       |

#### ・PCM/SPDIFのDPLLのバンド幅設定画面(PCM DPLL BW) PCM/SPDIF

ES9038PROのPCM/SPDIF時のDPLLのバンド幅を設定します。 バンド幅が小さいと音が良くなりますが、ロックが外れやすくなります。 ロックが外れると音が出ません。 ロックが外れずに音の良いバンド幅を選択してください。

| 選択項目      | 説明                               |  |
|-----------|----------------------------------|--|
| OFF       | DPLLを使わない                        |  |
| DPLL1~15  | 数字が小さい程、バンド幅が小さくなります。(初期値はDPLL5) |  |
| 選択ボタンをクリッ | ク(タッチ)すると切替できます。                 |  |

#### ・DSDのDPLLのバンド幅設定画面(DSD DPLL BW) DSDのみ

ES9038PROのDSD時のDPLLのバンド幅を設定します。 バンド幅が小さいと音が良くなりますが、ロックが外れやすくなります。 ロックが外れると音が出ません。 ロックが外れずに音の良いバンド幅を選択してください。

| 選択項目 | 説明        |
|------|-----------|
| OFF  | DPLLを使わない |

| 選択項目      | 説明                    |              |
|-----------|-----------------------|--------------|
| DPLL1~15  | 数字が小さい程、バンド幅が小さくなります。 | (初期値はDPLL10) |
| 選択ボタンをクリッ | ク(タッチ)すると切替できます。      |              |

#### ・同期モードの設定画面(Sync Mode)入力毎

ES9038PROのDPLLを使った非同期モードか、DPLLを使わずマスタークロックと同 期するモードを設定します。

同期モードを選択した場合は、マスタークロックの設定で100MHz Clock以外にして ください。

| 選択項目        | 説明                                |
|-------------|-----------------------------------|
| Normal Mode | 非同期モード(DPLLを使ってロックします)(初期値)       |
| Syncro Mode | 同期モード(DPLLを使わずMCLKに同期した外部クロックを使用) |

選択ボタンをクリック(タッチ)すると切替できます。

※同期モード時は、マスタークロックの設定画面で、BCLKxnかSCLKx4/2を設定してください。

同期モードの際は、ステータス画面のDPLLのサンプルレート数値は、停止またはオー ル0となります。

#### ・DPLLのロック速度の設定画面(Lock Speed)入力毎

ES9038PROのDPLLに必要なオーディオサンプル数(FIRエッジ数)を設定します。 値が大きいほどDPLLのロック速度が遅くなりますが、ロックの精度は高くなります。 ロック速度とロック精度の兼ね合いで値を選択してください。

| 選択項目     | 説明                |
|----------|-------------------|
| 16384(D) | FIRエッジ数16384(初期値) |
| 8192     | FIRエッジ数8192       |
| 5461     | FIRエッジ数5461       |
| 4096     | FIRエッジ数4096       |
| 3276     | FIRエッジ数3276       |
| 2730     | FIRエッジ数2730       |
| 2340     | FIRエッジ数2340       |
| 2048     | FIRエッジ数2048       |
| 1820     | FIRエッジ数1820       |
| 1638     | FIRエッジ数1638       |
| 1489     | FIRエッジ数1489       |

| 選択項目 | 説明          |
|------|-------------|
| 1365 | FIRエッジ数1365 |
| 1260 | FIRエッジ数1260 |
| 1170 | FIRエッジ数1170 |
| 1092 | FIRエッジ数1092 |
| 1024 | FIRエッジ数1024 |

選択ボタンをクリック(タッチ)すると切替できます。

#### ・マスタークロックの設定画面(Clock Mode)入力毎

ES9038PROののマスタークロックの周波数を設定します。 同期モード時は、BCLKかSCLKの逓倍モードを選択してください。 ※100MHz Clock以外に設定した時、INコネクタの入力信号(BCLKやSCLK)から正し

くマスタークロックが生成できない場合があります。

その時は、LCDにI2C通信エラーが出ますが、通常は強制的に100MHzに切り替わりますので問題ありませんが音は悪くなりますので、正しい設定に替えて下さい。

| 選択項目     | 説明                                                          |
|----------|-------------------------------------------------------------|
| 100MHz   | 基板上のクロック発振器から100MHzを出力(初期値)                                 |
| BCLKxn   | BCLK(64fs固定)をn逓倍して90.3168MHz/98.304MHzを生成                   |
| SCLKx4   | SCLK(22.5792MHz/24.576MHz)を4逓倍して90.3168MHz/98.304MHz<br>を生成 |
| SCLKx2   | SCLK(45.1584MHz/49.152MHz)を2逓倍して90.3168MHz/98.304MHz<br>を生成 |
| E-100MHz | EXT-CLOCKコネクタから100MHz外部クロック                                 |
| E-90MHz  | EXT-CLOCKコネクタから90.3168MHz外部クロック                             |
| E-98MHz  | EXT-CLOCKコネクタから98.304MHz外部クロック                              |

選択ボタンをクリック(タッチ)すると切替できます。

※BCLK x n時は、PCMのサンプリング周波数32KHzには対応しません。

※ジッタークリーナーでロック出来なかった時は、強制的に100MHz Clockモードで 動作します。

#### ・ジッタークリーナーの設定画面(JC Bandwidth)入力毎

ES9038PROのマスタークロック用のジッタークリーナーのバンド幅を設定します。 ジッタークリーナーがロックするまで最大1秒がかかり、その間にノイズが出る場合が あります(ロック中はDACミュートしています)。

バンド幅が狭い(Lowest)ほど音は良くなりますが、ロックしにくい場合は、ロック しやすいように、Low,Mediumとバンド幅を広げてください。

| 選択項目        | 説明                  |
|-------------|---------------------|
| Lowest      | Lowest              |
| Low         | Low                 |
| Medium      | Medium              |
| Medium-High | Medium-High         |
| High        | High                |
| Bypass      | ジッタークリーナーを使わない(初期値) |

選択ボタンをクリック(タッチ)すると切替できます。

#### ・ゲインキャリブレーションの設定画面(Gain Callibration)

ES9038PROのゲインキャリブレーションを設定します。 ES9038PROは製造の都合からチップ毎に出力ゲインにバラ付きがあります。 ゲインキャリブレーションを有効にする事で、出力ゲインを自動的に調節出来ます。 特に問題がなければ、Alwaysを選択して下さい。 ※ゲインキャリブレーションの処理の都合上、出力がOdBから-2dBになります。

| 選択項目                     | 説明           |
|--------------------------|--------------|
| Always                   | 常に自動調整(初期値)  |
| Only Once                | 起動時に1度だけ自動調整 |
| No Adjust                | 自動調整は行わない    |
| 溜力ギタンナタリック(タッイ)オスト切井マキオオ |              |

選択ボタンをクリック(タッチ)すると切替できます。 ※この設定は、再起動から有効となります。

#### ・自動ミュートの設定画面(Automute Set)

ES9038PROの自動ミュート機能を設定します。 PCM/SPDIF時、入力信号が切れたり変化したらノイズを出さないように自動的に出力 をミュートする機能の設定になります。

をミュートする成化の設定になります。

再生環境に合わせて選択して下さい。

DSD時は、自動ミュート機能は機能しません。

※自動ミュートを有効にしても、DSDからPCMに切り替える場合はノイズが出ます。

| 選択項目         | 説明                      |
|--------------|-------------------------|
| No Mute      | 何もしない                   |
| Mute         | 出力をミュートする(初期値)          |
| Out-GND      | 出力端子をグランドに落とす           |
| Mute+Out-GND | 出力をミュートして、出力端子をグランドに落とす |
| 選択ボタンをクリッ    | ク(タッチ)すると切替できます。        |

#### ・音量制御モードの設定画面(Volume Select)

ES9038PROの音量制御モードを設定します。

利用スタイルに合わせて、ロータリーエンコーダ及びリモコン、手動ボリューム、最大 値固定から選べます。

| 選択項目      | 説明                         |
|-----------|----------------------------|
| Encoder   | ロータリーエンコーダ及びリモコンで音量制御(初期値) |
| Manual1   | 手動ボリュームで音量制御(直線変化)         |
| Manual2   | 手動ボリュームで音量制御(対数変化A)        |
| Manual3   | 手動ボリュームで音量制御(対数変化B)        |
| Max Fixed | 最大音量に固定                    |
| 選択ボタンをクリッ | ク(タッチ)すると切替できます。           |

#### ・Mainボタン(Main)

メイン画面に戻ります。

#### 製作について

まずは、表面のICからハンダ付けをしましょう。

ICの向きは、マイコン以外は、左下が1ピンになりますので、ICの○印や脇の窪みが左 側に来るようにしてください。

IC表面の印刷文字が読める方向になっている事でも確認出来ます。

コツは、フラックスをハンダ面に適量を塗ります。軽い接着剤代わりになります。 お気に入りは、HAKKO NO.001-01です。

ICを載せますが、ピンセットを使って、慎重にピンの位置が合うまで調整します。 ICを指で押さえて、ICの隅をピンセットで押してずらして合わせます。

2面(ES9038PROは4面)とも完全に合うまで、しつこく繰り返すことが成功のポイントです。

完全にピン位置が合ったら、ICをピンセットで押さえて動かない状態にして、ハンダコ テに少量のハンダを乗せて、ICの端のピン(1~2ピン分)をハンダ付けします。ハンダ が多いとブリッジし易いので、少なめがお勧めです。

※セロテープなどで固定する方法もありますが、半田付けする箇所が見難くなったり、 テープを貼る際にICがずれやすいので、ピンセットで押さえる方法がお薦めです。

この時にピン位置がずれていたら、ハンダを溶かして一旦外します。

ここできちんと確認しないと後の祭りになります。

うまく行ったら、基板を回転させて、ハンダ付けするピンが奥向きになるようにします。

ハンダ付けしたピンと対角線上のピンをハンダ付けします。

これ以降はピンセットで押さえる必要なありません。

ピン一列にフラックスを塗って、ハンダ付けします。

コテをピン列に沿って横にずらして行きます。この時、ブリッジしても無視します。

2面(4面)とも同じようにハンダ付けが終わったら、ブリッジした箇所の対処です。

コテ先を綺麗にして、ブリッジ部分にフラックスを塗ったら、コテ先をブリッジ部分に 当てて、ピン先方向に動かせば、ハンダがコテ先に吸い取られます。

ブリッジのハンダが多量でない時は、コテ先を当てるだけで、ピン側にハンダが溶けて ブリッジが解消出来ます。

最後に、綿棒に無水アルコールをたっぷり吸わせて、ICに残ったフラックスを洗い流します。

ハンダくずを拭き取る感じでやると良いでしょう。

ICが正しくハンダ付けされたか、5~10倍ルーペを使って、目視チェックします。

出来れば、テスターを使って、ICの根元と基板側のピン部分とが導通しているか、隣の ピンと間違って導通していないかを確認しましょう。

テスター棒だと太すぎるのピンヘッダ用の細い線を取り付けると良いでしょう。 尚、隣のピンとの導通確認では、回路的に導通が正しい場合があります。

ES9038PROとSi5317とADM7154は、裏面の穴にもハンダ付けが必要です。 穴が深いのでハンダがIC裏面にうまく付かない事が良くありますので、ハンダを溶かし たら、コテ先でかき混ぜると良いでしょう。

※コテ先を強く押すと、ICが落ちてしまいますので、裏から何かで押さえてください。 うまく出来上がると、ハンダのえくぼが出来ます。

Si5317のピンは外に出ていないので、ハンダが少ないと接続されない事があります。 ピンは金色なので、ハンダの銀色に変わっているかを確認すると間違いないです。

XT2のクロックは、クロックに印刷されている・(ドット)印と、基板に印刷されている〇(白丸)印を合わせます。

| Xpress0 |  |
|---------|--|
| •       |  |
| または     |  |
| XLH736  |  |
| .XXX-XX |  |

XT1のクロックは、基板に印刷されている周波数が正しく読めるよう横長方向にして、 基板に印刷されている〇(白丸)印を左下に合わせます。



フラックスを4つのランドに塗って、予め、右上のランドにハンダを盛っておき、コテ 先をランドに当てながら、クロックをピンセットで載せます。 少し浮かせないと、クロックの底面のランドにハンダが廻りません。

残りの3つのランドもハンダ付けします。

チップコンデンサとチップ抵抗をハンダ付けします。
裏面のチップコンデンサとチップ抵抗をハンダ付けします。

表面に戻り、電解コンデンサや可変抵抗をハンダ付けします。

マイコンのピンソケットをハンダ付けします。

マイコンをピンソケットに挿してハンダ付けすると、斜め差し等が無く、うまく行きま す。

最後に残りのコネクタをハンダ付けします。

コネクタを使わず配線ケーブルを直にハンダ付けしても構いません。 コネクタを付ける場合は、向きに注意してください。1ピン目を合わせましょう。

最後に、電源の+、GND間の抵抗値を測って、ショートしていないかを確認します。

#### 動作確認

- 1)コントローラ1基板から制御する場合
  - JP9,JP10のジャンパーランドはオープンのまま
  - フェライトビーズFB8は使っても使わなくても良い

2)DAI2/3基板から制御する場合

- JP9, JP10のジャンパーランドはハンダショートする

- IC1のアイソレートICを使わない場合は、フェライトビーズFB8(ハンダショートで も可)は使う

コントローラ1基板かDAI2/3基板とCONTROLコネクタ同士を接続します。

- ・LCD(必須)
- ・ロータリーエンコーダ(選択)
- ・赤外線リモコン(選択)
- ・SELスイッチ(必須)
- ・P1~P5スイッチ(選択)
- ·VOL(10KΩ可変抵抗)(選択)
- も用意します。

まずは、電源を入れてみましょう。

煙や異臭がないかを確認します。

- 電源用LEDを付けている場合は、LEDが点灯しているか確認して下さい。
- ICを触って、指で触れれないほど熱くないかを確認します。
- LCDに起動画面が出れば、マイコンが動いている事になります。
- LCDに何も表示されない時は、VR1のボリュームを回して、LCDの輝度を調節してくだ さい。

ES9038PROとPCAL9539A等は、マイコンのI2C通信で制御するので、まずはマイコン が動かないと正常には動作しません。

LOS,LOLのLEDが点灯していない場合は、XT1-2,IC8,IC9のハンダ付けが怪しいです。

出力電圧チェック用のランドがありますので、テスターで以下の電圧を確認します。 電圧が正しくない時は、「=>」に問題場所を説明しておきます。

- ・FB8の表の左ランドとTS1間がPWR1電圧 =>PWR1電源
- ・FB8の表の右ランドとTS2間が+3.3V =>表面IC10
- ・FB8の表の右ランドとTS3間が+3.3V =>表面IC11
- ・FB8の表の右ランドとTS4間が+3.3V =>表面IC14
- ・FB8の表の右ランドとTS5間が+3.3V =>表面IC15

- ・FB8の表の右ランドとTS6間が+1.2V =>表面IC16
- ・FB8の表の右ランドとTS7間が+3.3V =>表面IC17
- ・FB8の表の右ランドとTS8間が+3.3V =>表面IC18
- ・FB8の表の右ランドとTS9間が+1.2V =>表面IC19

次に出力端子(L-OUT,R-OUT)の正出力、反転出力の電圧を確認します。 ES9038PROが動作していれば、1.65Vぐらいの電圧になります。そうでなければ、 ES9038PROか、XT1、XT2のハンダ付けを疑いましょう。 音が出来るか、トランスポーターやI/Vアンプを繋いで確認します。 音が出ない時は、入力信号が入っているか確認してください。

ES9038のI2Cエラーが出る場合は、100MHzクロックが正しくハンダ付けされていない 可能性があります。

※IC7を逆付けした場合もI2Cエラーが出ます。

問題が無ければ、ジッタークリーナーの動作確認です。

Si5317ジッタークリーナーは、初期設定ではパススルーになっています。

24)ジッタークリーナーの設定画面で「Lowest」に切り替えて、ジッタークリーナーの 動作確認をします。

LOLとLOSのLEDがありますが、これが両方共点灯しない場合は、どこかに問題があります。

Si5317のハンダ付けの失敗が一番多いので、Si5317を指で触って熱くなっているか確認 します。熱くならない時は、ハンダ付け不良(特に裏面)です。

23)マスタークロックの設定画面で「BCLKxn」に切り替えて、BCLK逓倍クロックと、 「SCLKx4」または「SCLKx2」に切り替えて、SCLK逓倍クロックを確認します。 うまく行かない時は、IC7のハンダ付けを確認してください。 ※ICコネクタにI2S信号が入力されている必要があります。

問題が無ければ、各種設定の動作確認して完成です。

### I2Cエラーについて

この基板では、ES9038PROとPCAL9539A等の合計4個のICを、マイコンがI2C通信 で制御しています。

I2C通信に不具合があるとICの動作がおかしくなりますので、不具合時は、どのICとの I2C通信でエラーが発生したかをLCDに表示します。

※ES9038PROに電源が通っていない時やマスタークロックが入力されていない時もI2C エラーとなります。

「I2C ERROR ICX-Y Z」

| Xの表示 | 基板      | IC番号 | IC        |
|------|---------|------|-----------|
| C3   | コントローラ1 | IC3  | PCF8574A  |
| C4   | コントローラ1 | IC4  | PCAL9539A |
| C9   | コントローラ1 | IC9  | PCAL9538A |
| E5   | DAC基板   | IC5  | PCF8574A  |
| E9   | DAC基板   | IC9  | PCAL9539A |
| EL   | DAC基板   | IC12 | ES9038PRO |
| ER   | DAC基板   | IC13 | ES9038PRO |
| ?    | 不明      | 不明   | 不明        |

### Y:I2C通信の動作を示します。

| Yの表示 | 説明          |
|------|-------------|
| С    | コンフィギュレーション |
| R    | 読み込み        |
| W    | 書き込み        |

#### Z:I2C通信のエラーを示します。

| Zの表示 | 説明                                         |
|------|--------------------------------------------|
| 1    | 送信サイズオーバー(通常は発生しません)                       |
| 2    | アドレス送信でNAK受信(l2C通信が出来ない状態なので、ハンダ付けミスの可能性大) |
| 3    | データ送信でNAK受信(I2C通信が不安定なので、電源電圧低下やノイズが原因)    |
| 4    | その他のエラー(l2C通信が出来ない状態なので、ハンダ付けミスの可能性大)      |

#### ERROR LEDによるI2Cエラー通知

LCD制御をI2C通信で行っているので、LCDが表示可能になるまでは、I2Cエラーはコントローラ 1 基板のERROR LEDの点滅でお知らせします。

| ERROR LED       | 基板      | IC番<br>号 | IC        |
|-----------------|---------|----------|-----------|
| 2回ずつ点滅を繰<br>り返す | コントローラ1 | IC3      | PCF8574A  |
| 点滅を繰り返す         | コントローラ1 | IC4      | PCAL9539A |

## ES9038DM2基板の表面



## ES9038DM2基板の裏面



# 修正履歴

| 版数     | 日付         | 説明                     |
|--------|------------|------------------------|
| Rev1.0 | 2017/11/21 | ・リニューアル版基板用に新規作成       |
| Rev1.1 | 2018/03/18 | ・LCD 16桁×2行タイプの表示説明を修正 |